Expansion: Difference between revisions

From Conformal Geometric Algebra
Jump to navigation Jump to search
(Created page with "The ''connect'' operation is performed by taking the wedge product between the dual of an object ''A'' and another object ''B'' with lower grade. The result is an object ''C'' that is orthogonal to ''A'' and contains ''B'', allowing a projection of ''B'' onto ''A'' through a simple intersection of ''A'' and ''C''. The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined...")
 
No edit summary
 
(18 intermediate revisions by the same user not shown)
Line 1: Line 1:
The ''connect'' operation is performed by taking the [[wedge product]] between the dual of an object ''A'' and another object ''B'' with lower grade. The result is an object ''C'' that is orthogonal to ''A'' and contains ''B'', allowing a [[projection]] of ''B'' onto ''A'' through a simple intersection of ''A'' and ''C''.
The ''expansion'' operation is performed by taking the [[wedge product]] between an object ''A'' and the [[antidual]] of another object ''B'' with higher grade. The result is an object ''C'' that contains ''A'' and is orthogonal to ''B'', allowing a [[projection]] of ''A'' onto ''B'' through a simple intersection of ''B'' and ''C''.


The [[flat points]], [[lines]], [[planes]], [[round points]], [[dipoles]], [[circles]], and [[spheres]] appearing in the following tables are defined as follows:
The [[flat points]], [[lines]], [[planes]], [[round points]], [[dipoles]], [[circles]], and [[spheres]] appearing in the following tables are defined as follows:
Line 13: Line 13:


{| class="wikitable"
{| class="wikitable"
! Formula || Description || Illustration
! Formula || Illustration
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf a
| style="padding: 12px;" | Dipole containing round point $$\mathbf a$$ and orthogonal to sphere $$\mathbf s$$.
=\, &(s_xa_w + s_ua_x)\,\mathbf e_{41} \,&+\, (s_ya_w + s_ua_y)\,\mathbf e_{42} \,&+\, (s_za_w + s_ua_z)\,\mathbf e_{43} \\
 
+\, &(s_za_y - s_ya_z)\,\mathbf e_{23} \,&+\, (s_xa_z - s_za_x)\,\mathbf e_{31} \,&+\, (s_ya_x - s_xa_y)\,\mathbf e_{12} \\
$$\begin{split}\mathbf a \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606}
-\, &(s_xa_u + s_wa_x)\,\mathbf e_{15} \,&-\, (s_ya_u + s_wa_y)\,\mathbf e_{25} \,&-\, (s_za_u + s_wa_z)\,\mathbf e_{35} + (s_ua_u - s_wa_w)\,\mathbf e_{45}
=\, &(a_xs_u + a_ws_x)\,\mathbf e_{41} \,&+\, (a_ys_u + a_ws_y)\,\mathbf e_{42} \,&+\, (a_zs_u + a_ws_z)\,\mathbf e_{43} \\
+\, &(a_ys_z - a_zs_y)\,\mathbf e_{23} \,&+\, (a_zs_x - a_xs_z)\,\mathbf e_{31} \,&+\, (a_xs_y - a_ys_x)\,\mathbf e_{12} \\
-\, &(a_xs_w + a_us_x)\,\mathbf e_{15} \,&-\, (a_ys_w + a_us_y)\,\mathbf e_{25} \,&-\, (a_zs_w + a_us_z)\,\mathbf e_{35} + (a_us_u - a_ws_w)\,\mathbf e_{45}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Dipole orthogonal to sphere $$\mathbf s$$ and containing round point $$\mathbf a$$.
| style="padding: 24px;" | [[Image:sphere_connect_round.svg|200px]]
| style="padding: 12px;" | [[Image:sphere_connect_round.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf a
| style="padding: 12px;" | Dipole containing round point $$\mathbf a$$ and orthogonal to plane $$\mathbf g$$.
=\, &g_xa_w \mathbf e_{41} + g_ya_w \mathbf e_{42} + g_za_w \mathbf e_{43} \\
 
+\, &(g_za_y - g_ya_z)\,\mathbf e_{23} + (g_xa_z - g_za_x)\,\mathbf e_{31} + (g_ya_x - g_xa_y)\,\mathbf e_{12} \\
$$\begin{split}\mathbf a \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606}
-\, &(g_xa_u + g_wa_x)\,\mathbf e_{15} - (g_ya_u + g_wa_y)\,\mathbf e_{25} - (g_za_u + g_wa_z)\,\mathbf e_{35} - g_wa_w \mathbf e_{45}
=\, &a_wg_x \mathbf e_{41} + a_wg_y \mathbf e_{42} + a_wg_z \mathbf e_{43} \\
+\, &(a_yg_z - a_zg_y)\,\mathbf e_{23} + (a_zg_x - a_xg_z)\,\mathbf e_{31} + (a_xg_y - a_yg_x)\,\mathbf e_{12} \\
-\, &(a_xg_w + a_ug_x)\,\mathbf e_{15} - (a_yg_w + a_ug_y)\,\mathbf e_{25} - (a_zg_w + a_ug_z)\,\mathbf e_{35} - a_wg_w \mathbf e_{45}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Dipole orthogonal to plane $$\mathbf g$$ and containing round point $$\mathbf a$$.
| style="padding: 24px;" | [[Image:plane_connect_round.svg|200px]]
| style="padding: 12px;" | [[Image:plane_connect_round.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf d
| style="padding: 12px;" | Circle containing dipole $$\mathbf d$$ and orthogonal to sphere $$\mathbf s$$.
=\, &(s_yd_{vz} - s_zd_{vy} + s_ud_{mx})\,\mathbf e_{423} \,&+\, (s_zd_{vx} - s_xd_{vz} + s_ud_{my})\,\mathbf e_{431} \\
 
+\, &(s_xd_{vy} - s_yd_{vx} + s_ud_{mz})\,\mathbf e_{412} \,&+\, (s_xd_{mx} + s_yd_{my} + s_zd_{mz})\,\mathbf e_{321} \\
$$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606}
+\, &(s_xd_{pw} + s_wd_{vx} + s_ud_{px})\,\mathbf e_{415} \,&+\, (s_zd_{py} - s_yd_{pz} + s_wd_{mx})\,\mathbf e_{235} \\
=\, &(d_{vy}s_z - d_{vz}s_y - d_{mx}s_u)\,\mathbf e_{423} \,&+\, (d_{vz}s_x - d_{vx}s_z - d_{my}s_u)\,\mathbf e_{431} \\
+\, &(s_yd_{pw} + s_wd_{vy} + s_ud_{py})\,\mathbf e_{425} \,&+\, (s_xd_{pz} - s_zd_{px} + s_wd_{my})\,\mathbf e_{315} \\
+\, &(d_{vx}s_y - d_{vy}s_x - d_{mz}s_u)\,\mathbf e_{412} \,&-\, (d_{mx}s_x + d_{my}s_y + d_{mz}s_z)\,\mathbf e_{321} \\
+\, &(s_zd_{pw} + s_wd_{vz} + s_ud_{pz})\,\mathbf e_{435} \,&+\, (s_yd_{px} - s_xd_{py} + s_wd_{mz})\,\mathbf e_{125}
-\, &(d_{vx}s_w + d_{pw}s_x + d_{px}s_u)\,\mathbf e_{415} \,&+\, (d_{pz}s_y - d_{py}s_z - d_{mx}s_w)\,\mathbf e_{235} \\
-\, &(d_{vy}s_w + d_{pw}s_y + d_{py}s_u)\,\mathbf e_{425} \,&+\, (d_{px}s_z - d_{pz}s_x - d_{my}s_w)\,\mathbf e_{315} \\
-\, &(d_{vz}s_w + d_{pw}s_z + d_{pz}s_u)\,\mathbf e_{435} \,&+\, (d_{py}s_x - d_{px}s_y - d_{mz}s_w)\,\mathbf e_{125}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Circle orthogonal to sphere $$\mathbf s$$ and containing dipole $$\mathbf d$$.
| style="padding: 24px;" | [[Image:sphere_connect_dipole.svg|200px]]
| style="padding: 12px;" | [[Image:sphere_connect_dipole.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf d
| style="padding: 12px;" | Circle containing dipole $$\mathbf d$$ and orthogonal to plane $$\mathbf g$$.
=\, &(g_yd_{vz} - g_zd_{vy})\,\mathbf e_{423} \,&+\, (g_zd_{vx} - g_xd_{vz})\,\mathbf e_{431} \\
 
+\, &(g_xd_{vy} - g_yd_{vx})\,\mathbf e_{412} \,&+\, (g_xd_{mx} + g_yd_{my} + g_zd_{mz})\,\mathbf e_{321} \\
$$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606}
+\, &(g_xd_{pw} + g_wd_{vx})\,\mathbf e_{415} \,&+\, (g_zd_{py} - g_yd_{pz} + g_wd_{mx})\,\mathbf e_{235} \\
=\, &(d_{vy}g_z - d_{vz}g_y)\,\mathbf e_{423} \,&+\, (d_{vz}g_x - d_{vx}g_z)\,\mathbf e_{431} \\
+\, &(g_yd_{pw} + g_wd_{vy})\,\mathbf e_{425} \,&+\, (g_xd_{pz} - g_zd_{px} + g_wd_{my})\,\mathbf e_{315} \\
+\, &(d_{vx}g_y - d_{vy}g_x)\,\mathbf e_{412} \,&-\, (d_{mx}g_x + d_{my}g_y + d_{mz}g_z)\,\mathbf e_{321} \\
+\, &(g_zd_{pw} + g_wd_{vz})\,\mathbf e_{435} \,&+\, (g_yd_{px} - g_xd_{py} + g_wd_{mz})\,\mathbf e_{125}
-\, &(d_{vx}g_w + d_{pw}g_x)\,\mathbf e_{415} \,&+\, (d_{pz}g_y - d_{py}g_z - d_{mx}g_w)\,\mathbf e_{235} \\
-\, &(d_{vy}g_w + d_{pw}g_y)\,\mathbf e_{425} \,&+\, (d_{px}g_z - d_{pz}g_x - d_{my}g_w)\,\mathbf e_{315} \\
-\, &(d_{vz}g_w + d_{pw}g_z)\,\mathbf e_{435} \,&+\, (d_{py}g_x - d_{px}g_y - d_{mz}g_w)\,\mathbf e_{125}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Circle orthogonal to plane $$\mathbf g$$ and containing dipole $$\mathbf d$$.
| style="padding: 24px;" | [[Image:plane_connect_dipole.svg|200px]]
| style="padding: 12px;" | [[Image:plane_connect_dipole.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf p
| style="padding: 12px;" | Line containing flat point $$\mathbf p$$ and orthogonal to sphere $$\mathbf s$$.
=\, &(s_xp_w + s_up_x)\,\mathbf e_{415} \,&+\, (s_yp_w + s_up_y)\,\mathbf e_{425} \,&+\, (s_zp_w + s_up_z)\,\mathbf e_{435} \\
 
+\, &(s_zp_y - s_yp_z)\,\mathbf e_{235} \,&+\, (s_xp_z - s_zp_x)\,\mathbf e_{315} \,&+\, (s_yp_x - s_xp_y)\,\mathbf e_{125}
$$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} =
-\, &(p_xs_u + p_ws_x)\,\mathbf e_{415} \,&-\, (p_ys_u + p_ws_y)\,\mathbf e_{425} \,&-\, (p_zs_u + p_ws_z)\,\mathbf e_{435} \\
+\, &(p_zs_y - p_ys_z)\,\mathbf e_{235} \,&+\, (p_xs_z - p_zs_x)\,\mathbf e_{315} \,&+\, (p_ys_x - p_xs_y)\,\mathbf e_{125}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Line orthogonal to sphere $$\mathbf s$$ and containing flat point $$\mathbf p$$.
| style="padding: 24px;" | [[Image:sphere_connect_point.svg|200px]]
| style="padding: 12px;" | [[Image:sphere_connect_point.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf p
| style="padding: 12px;" | Line containing flat point $$\mathbf p$$ and orthogonal to plane $$\mathbf g$$.
=\, &g_xp_w \mathbf e_{415} + g_yp_w \mathbf e_{425} + g_zp_w \mathbf e_{435} \\
 
+\, &(g_zp_y - g_yp_z)\,\mathbf e_{235} + (g_xp_z - g_zp_x)\,\mathbf e_{315} + (g_yp_x - g_xp_y)\,\mathbf e_{125}
$$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =
-\, &p_wg_x \mathbf e_{415} - p_wg_y \mathbf e_{425} - p_wg_z \mathbf e_{435} \\
+\, &(p_zg_y - p_yg_z)\,\mathbf e_{235} + (p_xg_z - p_zg_x)\,\mathbf e_{315} + (p_yg_x - p_xg_y)\,\mathbf e_{125}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Line orthogonal to plane $$\mathbf g$$ and containing flat point $$\mathbf p$$.
| style="padding: 24px;" | [[Image:plane_connect_point.svg|200px]]
| style="padding: 12px;" | [[Image:plane_connect_point.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf c
| style="padding: 12px;" | Sphere containing circle $$\mathbf c$$ and orthogonal to sphere $$\mathbf s$$.
=\, &(s_uc_{gw} - s_xc_{gx} - s_yc_{gy} - s_zc_{gz})\,\mathbf e_{1234} \\
 
+\, &(s_yc_{vz} - s_zc_{vy} - s_wc_{gx} + s_uc_{mx})\,\mathbf e_{4235} \\
$$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606}
+\, &(s_zc_{vx} - s_xc_{vz} - s_wc_{gy} + s_uc_{my})\,\mathbf e_{4315} \\
=\, &(c_{gw}s_u - c_{gx}s_x - c_{gy}s_y - c_{gz}s_z)\,\mathbf e_{1234} \\
+\, &(s_xc_{vy} - s_yc_{vx} - s_wc_{gz} + s_uc_{mz})\,\mathbf e_{4125} \\
+\, &(c_{vz}s_y - c_{vy}s_z + c_{mx}s_u - c_{gx}s_w)\,\mathbf e_{4235} \\
+\, &(s_xc_{mx} + s_yc_{my} + s_zc_{mz} - s_wc_{gw})\,\mathbf e_{3215}
+\, &(c_{vx}s_z - c_{vz}s_x + c_{my}s_u - c_{gy}s_w)\,\mathbf e_{4315} \\
+\, &(c_{vy}s_x - c_{vx}s_y + c_{mz}s_u - c_{gz}s_w)\,\mathbf e_{4125} \\
+\, &(c_{mx}s_x + c_{my}s_y + c_{mz}s_z - c_{gw}s_w)\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Sphere orthogonal to sphere $$\mathbf s$$ and containing circle $$\mathbf c$$.
| style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]]
| style="padding: 12px;" | [[Image:sphere_connect_circle.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf c =
| style="padding: 12px;" | Sphere containing circle $$\mathbf c$$ and orthogonal to plane $$\mathbf g$$.
-\, &(g_xc_{gx} + g_yc_{gy} + g_zc_{gz})\,\mathbf e_{1234} \\
 
+\, &(g_yc_{vz} - g_zc_{vy} - g_wc_{gx})\,\mathbf e_{4235} \\
$$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =
+\, &(g_zc_{vx} - g_xc_{vz} - g_wc_{gy})\,\mathbf e_{4315} \\
-\, &(c_{gx}g_x + c_{gy}g_y + c_{gz}g_z)\,\mathbf e_{1234} \\
+\, &(g_xc_{vy} - g_yc_{vx} - g_wc_{gz})\,\mathbf e_{4125} \\
+\, &(c_{vz}g_y - c_{vy}g_z - c_{gx}g_w)\,\mathbf e_{4235} \\
+\, &(g_xc_{mx} + g_yc_{my} + g_zc_{mz} - g_wc_{gw})\,\mathbf e_{3215}
+\, &(c_{vx}g_z - c_{vz}g_x - c_{gy}g_w)\,\mathbf e_{4315} \\
+\, &(c_{vy}g_x - c_{vx}g_y - c_{gz}g_w)\,\mathbf e_{4125} \\
+\, &(c_{mx}g_x + c_{my}g_y + c_{mz}g_z - c_{gw}g_w)\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Sphere orthogonal to plane $$\mathbf g$$ and containing circle $$\mathbf c$$.
| style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]]
| style="padding: 12px;" | [[Image:plane_connect_circle.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \boldsymbol l
| style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and orthogonal to sphere $$\mathbf s$$.
=\, &(s_yl_{vz} - s_zl_{vy} - s_ul_{mx})\,\mathbf e_{4235} + (s_zl_{vx} - s_xl_{vz} - s_ul_{my})\,\mathbf e_{4315} \\
 
+\, &(s_xl_{vy} - s_yl_{vx} - s_ul_{mz})\,\mathbf e_{4125} + (s_xl_{mx} + s_yl_{my} + s_zl_{mz})\,\mathbf e_{3215}
$$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606}
=\, &(l_{vz}s_y - l_{vy}s_z + l_{mx}s_u)\,\mathbf e_{4235} + (l_{vx}s_z - l_{vz}s_x + l_{my}s_u)\,\mathbf e_{4315} \\
+\, &(l_{vy}s_x - l_{vx}s_y + l_{mz}s_u)\,\mathbf e_{4125} + (l_{mx}s_x + l_{my}s_y + l_{mz}s_z)\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Plane orthogonal to sphere $$\mathbf s$$ and containing line $$\boldsymbol l$$.
| style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]]
| style="padding: 12px;" | [[Image:sphere_connect_line.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \boldsymbol l
| style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and orthogonal to plane $$\mathbf g$$.
=\, &(g_yl_{vz} - g_zl_{vy})\,\mathbf e_{4235} + (g_zl_{vx} - g_xl_{vz})\,\mathbf e_{4315} \\
 
+\, &(g_xl_{vy} - g_yl_{vx})\,\mathbf e_{4125} + (g_xl_{mx} + g_yl_{my} + g_zl_{mz})\,\mathbf e_{3215}
$$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606}
=\, &(l_{vz}g_y - l_{vy}g_z)\,\mathbf e_{4235} + (l_{vx}g_z - l_{vz}g_x)\,\mathbf e_{4315} \\
+\, &(l_{vy}g_x - l_{vx}g_y)\,\mathbf e_{4125} + (l_{mx}g_x + l_{my}g_y + l_{mz}g_z)\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Plane orthogonal to plane $$\mathbf g$$ and containing line $$\boldsymbol l$$.
| style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]]
| style="padding: 12px;" | [[Image:plane_connect_line.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf c^* \wedge \mathbf a
| style="padding: 12px;" | Circle containing round point $$\mathbf a$$ and orthogonal to circle $$\mathbf c$$.
=\, &(c_{gy}a_z - c_{gz}a_y + c_{vx}a_w)\,\mathbf e_{423} \,&+\, (c_{gz}a_x - c_{gx}a_z + c_{vy}a_w)\,\mathbf e_{431} \\
 
+\, &(c_{gx}a_y - c_{gy}a_x + c_{vz}a_w)\,\mathbf e_{412} \,&-\, (c_{vx}a_x + c_{vy}a_y + c_{vz}a_z)\,\mathbf e_{321} \\
$$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606}
+\, &(c_{mx}a_w + c_{gw}a_x + c_{gx}a_u)\,\mathbf e_{415} \,&+\, (c_{mz}a_y - c_{my}a_z + c_{vx}a_u)\,\mathbf e_{235} \\
=\, &(a_yc_{gz} - a_zc_{gy} - a_wc_{vx})\,\mathbf e_{423} \,&+\, (a_zc_{gx} - a_xc_{gz} - a_wc_{vy})\,\mathbf e_{431} \\
+\, &(c_{my}a_w + c_{gw}a_y + c_{gy}a_u)\,\mathbf e_{425} \,&+\, (c_{mx}a_z - c_{mz}a_x + c_{vy}a_u)\,\mathbf e_{315} \\
+\, &(a_xc_{gy} - a_yc_{gx} - a_wc_{vz})\,\mathbf e_{412} \,&+\, (a_xc_{vx} + a_yc_{vy} + a_zc_{vz})\,\mathbf e_{321} \\
+\, &(c_{mz}a_w + c_{gw}a_z + c_{gz}a_u)\,\mathbf e_{435} \,&+\, (c_{my}a_x - c_{mx}a_y + c_{vz}a_u)\,\mathbf e_{125}
-\, &(a_wc_{mx} + a_xc_{gw} + a_uc_{gx})\,\mathbf e_{415} \,&+\, (a_zc_{my} - a_yc_{mz} - a_uc_{vx})\,\mathbf e_{235} \\
-\, &(a_wc_{my} + a_yc_{gw} + a_uc_{gy})\,\mathbf e_{425} \,&+\, (a_xc_{mz} - a_zc_{mx} - a_uc_{vy})\,\mathbf e_{315} \\
-\, &(a_wc_{mz} + a_zc_{gw} + a_uc_{gz})\,\mathbf e_{435} \,&+\, (a_yc_{mx} - a_xc_{my} - a_uc_{vz})\,\mathbf e_{125}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Circle orthogonal to circle $$\mathbf c$$ and containing round point $$\mathbf a$$.
| style="padding: 24px;" | [[Image:circle_connect_round.svg|200px]]
| style="padding: 12px;" | [[Image:circle_connect_round.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\boldsymbol l^* \wedge \mathbf a
| style="padding: 12px;" | Circle containing round point $$\mathbf a$$ and orthogonal to line $$\boldsymbol l$$.
=\, &l_{vx}a_w \mathbf e_{423} + l_{vy}a_w \mathbf e_{431} + l_{vz}a_w \mathbf e_{412}\\
 
-\, &(l_{vx}a_x + l_{vy}a_y + l_{vz}a_z)\,\mathbf e_{321} \\
$$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} =
+\, &l_{mx}a_w \mathbf e_{415} + (l_{mz}a_y - l_{my}a_z + l_{vx}a_u)\,\mathbf e_{235} \\
-\, &a_wl_{vx} \mathbf e_{423} - a_wl_{vy} \mathbf e_{431} - a_wl_{vz} \mathbf e_{412}\\
+\, &l_{my}a_w \mathbf e_{425} + (l_{mx}a_z - l_{mz}a_x + l_{vy}a_u)\,\mathbf e_{315} \\
+\, &(a_xl_{vx} + a_yl_{vy} + a_zl_{vz})\,\mathbf e_{321} \\
+\, &l_{mz}a_w \mathbf e_{435} + (l_{my}a_x - l_{mx}a_y + l_{vz}a_u)\,\mathbf e_{125}
-\, &a_wl_{mx} \mathbf e_{415} + (a_zl_{my} - a_yl_{mz} - a_ul_{vx})\,\mathbf e_{235} \\
-\, &a_wl_{my} \mathbf e_{425} + (a_xl_{mz} - a_zl_{mx} - a_ul_{vy})\,\mathbf e_{315} \\
-\, &a_wl_{mz} \mathbf e_{435} + (a_yl_{mx} - a_xl_{my} - a_ul_{vz})\,\mathbf e_{125}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Circle orthogonal to line $$\boldsymbol l$$ and containing round point $$\mathbf a$$.
| style="padding: 24px;" | [[Image:line_connect_round.svg|200px]]
| style="padding: 12px;" | [[Image:line_connect_round.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf c^* \wedge \mathbf p
| style="padding: 12px;" | Plane containing flat point $$\mathbf p$$ and orthogonal to circle $$\mathbf c$$.
=\, &(c_{gy}p_z - c_{gz}p_y + c_{vx}p_w)\,\mathbf e_{4235} \,&+\, (c_{gz}p_x - c_{gx}p_z + c_{vy}p_w)\,\mathbf e_{4315} \\
 
+\, &(c_{gx}p_y - c_{gy}p_x + c_{vz}p_w)\,\mathbf e_{4125} \,&-\, (c_{vx}p_x + c_{vy}p_y + c_{vz}p_z)\,\mathbf e_{3215}
$$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606}
=\, &(p_yc_{gz} - p_zc_{gy} - p_wc_{vx})\,\mathbf e_{4235} \,&+\, (p_zc_{gx} - p_xc_{gz} - p_wc_{vy})\,\mathbf e_{4315} \\
+\, &(p_xc_{gy} - p_yc_{gx} - p_wc_{vz})\,\mathbf e_{4125} \,&+\, (p_xc_{vx} + p_yc_{vy} + p_zc_{vz})\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Plane orthogonal to circle $$\mathbf c$$ and containing flat point $$\mathbf p$$.
| style="padding: 24px;" | [[Image:circle_connect_point.svg|200px]]
| style="padding: 12px;" | [[Image:circle_connect_point.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\boldsymbol l^* \wedge \mathbf p
| style="padding: 12px;" | Plane containing flat point $$\mathbf p$$ and orthogonal to line $$\boldsymbol l$$.
=\, &l_{vx}p_w \mathbf e_{4235} + l_{vy}p_w \mathbf e_{4315} + l_{vz}p_w \mathbf e_{4125} \\
 
-\, &(l_{vx}p_x + l_{vy}p_y + l_{vz}p_z)\,\mathbf e_{3215}
$$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} =
-\, &p_wl_{vx} \mathbf e_{4235} - p_wl_{vy} \mathbf e_{4315} - p_wl_{vz} \mathbf e_{4125} \\
+\, &(p_xl_{vx} + p_yl_{vy} + p_zl_{vz})\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Plane orthogonal to line $$\boldsymbol l$$ and containing flat point $$\mathbf p$$.
| style="padding: 24px;" | [[Image:line_connect_point.svg|200px]]
| style="padding: 12px;" | [[Image:line_connect_point.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf c^* \wedge \mathbf d =
| style="padding: 12px;" | Sphere containing dipole $$\mathbf d$$ orthogonal to circle $$\mathbf c$$.
-\, &(c_{vx}d_{vx} + c_{vy}d_{vy} + c_{vz}d_{vz} + c_{gx}d_{mx} + c_{gy}d_{my} + c_{gz}d_{mz})\,\mathbf e_{1234} \\
 
+\, &(c_{mz}d_{vy} - c_{my}d_{vz} + c_{vx}d_{pw} + c_{gy}d_{pz} - c_{gz}d_{py} - c_{gw}d_{mx})\,\mathbf e_{4235} \\
$$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606}
+\, &(c_{mx}d_{vz} - c_{mz}d_{vx} + c_{vy}d_{pw} + c_{gz}d_{px} - c_{gx}d_{pz} - c_{gw}d_{my})\,\mathbf e_{4315} \\
=\, &(d_{vx}c_{vx} + d_{vy}c_{vy} + d_{vz}c_{vz} + d_{mx}c_{gx} + d_{my}c_{gy} + d_{mz}c_{gz})\,\mathbf e_{1234} \\
+\, &(c_{my}d_{vx} - c_{mx}d_{vy} + c_{vz}d_{pw} + c_{gx}d_{py} - c_{gy}d_{px} - c_{gw}d_{mz})\,\mathbf e_{4125} \\
+\, &(d_{vz}c_{my} - d_{vy}c_{mz} - d_{pw}c_{vx} + d_{py}c_{gz} - d_{pz}c_{gy} + d_{mx}c_{gw})\,\mathbf e_{4235} \\
-\, &(c_{vx}d_{px} + c_{vy}d_{py} + c_{vz}d_{pz} + c_{mx}d_{mx} + c_{my}d_{my} + c_{mz}d_{mz})\,\mathbf e_{3215}
+\, &(d_{vx}c_{mz} - d_{vz}c_{mx} - d_{pw}c_{vy} + d_{pz}c_{gx} - d_{px}c_{gz} + d_{my}c_{gw})\,\mathbf e_{4315} \\
+\, &(d_{vy}c_{mx} - d_{vx}c_{my} - d_{pw}c_{vz} + d_{px}c_{gy} - d_{py}c_{gx} + d_{mz}c_{gw})\,\mathbf e_{4125} \\
+\, &(d_{px}c_{vx} + d_{py}c_{vy} + d_{pz}c_{vz} + d_{mx}c_{mx} + d_{my}c_{my} + d_{mz}c_{mz})\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Sphere orthogonal to circle $$\mathbf c$$ and containing dipole $$\mathbf d$$.
| style="padding: 24px;" | [[Image:circle_connect_dipole.svg|200px]]
| style="padding: 12px;" | [[Image:circle_connect_dipole.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\boldsymbol l^* \wedge \mathbf d =
| style="padding: 12px;" | Sphere containing dipole $$\mathbf d$$ and orthogonal to line $$\boldsymbol l$$.
-\, &(l_{vx}d_{vx} + l_{vy}d_{vy} + l_{vz}d_{vz})\,\mathbf e_{1234} \\
 
+\, &(l_{mz}d_{vy} - l_{my}d_{vz} + l_{vx}d_{pw})\,\mathbf e_{4235} \\
$$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606}
+\, &(l_{mx}d_{vz} - l_{mz}d_{vx} + l_{vy}d_{pw})\,\mathbf e_{4315} \\
=\, &(d_{vx}l_{vx} + d_{vy}l_{vy} + d_{vz}l_{vz})\,\mathbf e_{1234} \\
+\, &(l_{my}d_{vx} - l_{mx}d_{vy} + l_{vz}d_{pw})\,\mathbf e_{4125} \\
+\, &(d_{vz}l_{my} - d_{vy}l_{mz} - d_{pw}l_{vx})\,\mathbf e_{4235} \\
-\, &(l_{vx}d_{px} + l_{vy}d_{py} + l_{vz}d_{pz} + l_{mx}d_{mx} + l_{my}d_{my} + l_{mz}d_{mz})\,\mathbf e_{3215}
+\, &(d_{vx}l_{mz} - d_{vz}l_{mx} - d_{pw}l_{vy})\,\mathbf e_{4315} \\
+\, &(d_{vy}l_{mx} - d_{vx}l_{my} - d_{pw}l_{vz})\,\mathbf e_{4125} \\
+\, &(d_{px}l_{vx} + d_{py}l_{vy} + d_{pzl_{vz}} + d_{mx}l_{mx} + d_{my}l_{my} + d_{mz}l_{mz})\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Sphere orthogonal to line $$\boldsymbol l$$ and containing dipole $$\mathbf d$$.
| style="padding: 24px;" | [[Image:line_connect_dipole.svg|200px]]
| style="padding: 12px;" | [[Image:line_connect_dipole.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf d^* \wedge \mathbf a
| style="padding: 12px;" | Sphere containing round point $$\mathbf a$$ and orthogonal to dipole $$\mathbf d$$.
=\, &(d_{vx}a_x + d_{vy}a_y + d_{vz}a_z - d_{pw}a_w)\,\mathbf e_{1234} \\
 
+\, &(d_{my}a_z - d_{mz}a_y + d_{px}a_w - d_{vx}a_u)\,\mathbf e_{4235} \\
$$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606}
+\, &(d_{mz}a_x - d_{mx}a_z + d_{py}a_w - d_{vy}a_u)\,\mathbf e_{4315} \\
=\, &(a_xd_{vx} + a_yd_{vy} + a_zd_{vz} - a_wd_{pw})\,\mathbf e_{1234} \\
+\, &(d_{mx}a_y - d_{my}a_x + d_{pz}a_w - d_{vz}a_u)\,\mathbf e_{4125} \\
+\, &(a_zd_{my} - a_yd_{mz} + a_wd_{px} - a_ud_{vx})\,\mathbf e_{4235} \\
+\, &(d_{pw}a_u - d_{px}a_x - d_{py}a_y - d_{pz}a_z)\,\mathbf e_{3215}
+\, &(a_xd_{mz} - a_zd_{mx} + a_wd_{py} - a_ud_{vy})\,\mathbf e_{4315} \\
+\, &(a_yd_{mx} - a_xd_{my} + a_wd_{pz} - a_ud_{vz})\,\mathbf e_{4125} \\
+\, &(a_ud_{pw} - a_xd_{px} - a_yd_{py} - a_zd_{pz})\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Sphere orthogonal to dipole $$\mathbf d$$ and containing round point $$\mathbf a$$.
| style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]]
| style="padding: 12px;" | [[Image:dipole_connect_round.svg|250px]]
|-
|-
| style="padding: 12px;" | $$\begin{split}\mathbf p^* \wedge \mathbf a =
| style="padding: 12px;" | Sphere containing round point $$\mathbf a$$ and centered at flat point $$\mathbf p$$.
-\, &p_wa_w \mathbf e_{1234} + p_xa_w \mathbf e_{4235} + p_ya_w \mathbf e_{4315} + p_za_w \mathbf e_{4125} \\
 
+\, &(p_wa_u - p_xa_x - p_ya_y - p_za_z)\,\mathbf e_{3215}
$$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} =
-\, &a_wp_w \mathbf e_{1234} + a_wp_x \mathbf e_{4235} + a_wp_y \mathbf e_{4315} + a_wp_z \mathbf e_{4125} \\
+\, &(a_up_w - a_xp_x - a_yp_y - a_zp_z)\,\mathbf e_{3215}
\end{split}$$
\end{split}$$
| style="padding: 12px;" | Sphere centered at flat point $$\mathbf p$$ and containing round point $$\mathbf a$$.
| style="padding: 24px;" | [[Image:point_connect_round.svg|200px]]
| style="padding: 12px;" | [[Image:point_connect_round.svg|250px]]
|}
|}



Latest revision as of 06:50, 24 October 2023

The expansion operation is performed by taking the wedge product between an object A and the antidual of another object B with higher grade. The result is an object C that contains A and is orthogonal to B, allowing a projection of A onto B through a simple intersection of B and C.

The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:

$$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
$$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
$$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
$$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
$$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
$$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
$$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$
Formula Illustration
Dipole containing round point $$\mathbf a$$ and orthogonal to sphere $$\mathbf s$$.

$$\begin{split}\mathbf a \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} =\, &(a_xs_u + a_ws_x)\,\mathbf e_{41} \,&+\, (a_ys_u + a_ws_y)\,\mathbf e_{42} \,&+\, (a_zs_u + a_ws_z)\,\mathbf e_{43} \\ +\, &(a_ys_z - a_zs_y)\,\mathbf e_{23} \,&+\, (a_zs_x - a_xs_z)\,\mathbf e_{31} \,&+\, (a_xs_y - a_ys_x)\,\mathbf e_{12} \\ -\, &(a_xs_w + a_us_x)\,\mathbf e_{15} \,&-\, (a_ys_w + a_us_y)\,\mathbf e_{25} \,&-\, (a_zs_w + a_us_z)\,\mathbf e_{35} + (a_us_u - a_ws_w)\,\mathbf e_{45} \end{split}$$

Dipole containing round point $$\mathbf a$$ and orthogonal to plane $$\mathbf g$$.

$$\begin{split}\mathbf a \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &a_wg_x \mathbf e_{41} + a_wg_y \mathbf e_{42} + a_wg_z \mathbf e_{43} \\ +\, &(a_yg_z - a_zg_y)\,\mathbf e_{23} + (a_zg_x - a_xg_z)\,\mathbf e_{31} + (a_xg_y - a_yg_x)\,\mathbf e_{12} \\ -\, &(a_xg_w + a_ug_x)\,\mathbf e_{15} - (a_yg_w + a_ug_y)\,\mathbf e_{25} - (a_zg_w + a_ug_z)\,\mathbf e_{35} - a_wg_w \mathbf e_{45} \end{split}$$

Circle containing dipole $$\mathbf d$$ and orthogonal to sphere $$\mathbf s$$.

$$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} =\, &(d_{vy}s_z - d_{vz}s_y - d_{mx}s_u)\,\mathbf e_{423} \,&+\, (d_{vz}s_x - d_{vx}s_z - d_{my}s_u)\,\mathbf e_{431} \\ +\, &(d_{vx}s_y - d_{vy}s_x - d_{mz}s_u)\,\mathbf e_{412} \,&-\, (d_{mx}s_x + d_{my}s_y + d_{mz}s_z)\,\mathbf e_{321} \\ -\, &(d_{vx}s_w + d_{pw}s_x + d_{px}s_u)\,\mathbf e_{415} \,&+\, (d_{pz}s_y - d_{py}s_z - d_{mx}s_w)\,\mathbf e_{235} \\ -\, &(d_{vy}s_w + d_{pw}s_y + d_{py}s_u)\,\mathbf e_{425} \,&+\, (d_{px}s_z - d_{pz}s_x - d_{my}s_w)\,\mathbf e_{315} \\ -\, &(d_{vz}s_w + d_{pw}s_z + d_{pz}s_u)\,\mathbf e_{435} \,&+\, (d_{py}s_x - d_{px}s_y - d_{mz}s_w)\,\mathbf e_{125} \end{split}$$

Circle containing dipole $$\mathbf d$$ and orthogonal to plane $$\mathbf g$$.

$$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &(d_{vy}g_z - d_{vz}g_y)\,\mathbf e_{423} \,&+\, (d_{vz}g_x - d_{vx}g_z)\,\mathbf e_{431} \\ +\, &(d_{vx}g_y - d_{vy}g_x)\,\mathbf e_{412} \,&-\, (d_{mx}g_x + d_{my}g_y + d_{mz}g_z)\,\mathbf e_{321} \\ -\, &(d_{vx}g_w + d_{pw}g_x)\,\mathbf e_{415} \,&+\, (d_{pz}g_y - d_{py}g_z - d_{mx}g_w)\,\mathbf e_{235} \\ -\, &(d_{vy}g_w + d_{pw}g_y)\,\mathbf e_{425} \,&+\, (d_{px}g_z - d_{pz}g_x - d_{my}g_w)\,\mathbf e_{315} \\ -\, &(d_{vz}g_w + d_{pw}g_z)\,\mathbf e_{435} \,&+\, (d_{py}g_x - d_{px}g_y - d_{mz}g_w)\,\mathbf e_{125} \end{split}$$

Line containing flat point $$\mathbf p$$ and orthogonal to sphere $$\mathbf s$$.

$$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = -\, &(p_xs_u + p_ws_x)\,\mathbf e_{415} \,&-\, (p_ys_u + p_ws_y)\,\mathbf e_{425} \,&-\, (p_zs_u + p_ws_z)\,\mathbf e_{435} \\ +\, &(p_zs_y - p_ys_z)\,\mathbf e_{235} \,&+\, (p_xs_z - p_zs_x)\,\mathbf e_{315} \,&+\, (p_ys_x - p_xs_y)\,\mathbf e_{125} \end{split}$$

Line containing flat point $$\mathbf p$$ and orthogonal to plane $$\mathbf g$$.

$$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = -\, &p_wg_x \mathbf e_{415} - p_wg_y \mathbf e_{425} - p_wg_z \mathbf e_{435} \\ +\, &(p_zg_y - p_yg_z)\,\mathbf e_{235} + (p_xg_z - p_zg_x)\,\mathbf e_{315} + (p_yg_x - p_xg_y)\,\mathbf e_{125} \end{split}$$

Sphere containing circle $$\mathbf c$$ and orthogonal to sphere $$\mathbf s$$.

$$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} =\, &(c_{gw}s_u - c_{gx}s_x - c_{gy}s_y - c_{gz}s_z)\,\mathbf e_{1234} \\ +\, &(c_{vz}s_y - c_{vy}s_z + c_{mx}s_u - c_{gx}s_w)\,\mathbf e_{4235} \\ +\, &(c_{vx}s_z - c_{vz}s_x + c_{my}s_u - c_{gy}s_w)\,\mathbf e_{4315} \\ +\, &(c_{vy}s_x - c_{vx}s_y + c_{mz}s_u - c_{gz}s_w)\,\mathbf e_{4125} \\ +\, &(c_{mx}s_x + c_{my}s_y + c_{mz}s_z - c_{gw}s_w)\,\mathbf e_{3215} \end{split}$$

Sphere containing circle $$\mathbf c$$ and orthogonal to plane $$\mathbf g$$.

$$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = -\, &(c_{gx}g_x + c_{gy}g_y + c_{gz}g_z)\,\mathbf e_{1234} \\ +\, &(c_{vz}g_y - c_{vy}g_z - c_{gx}g_w)\,\mathbf e_{4235} \\ +\, &(c_{vx}g_z - c_{vz}g_x - c_{gy}g_w)\,\mathbf e_{4315} \\ +\, &(c_{vy}g_x - c_{vx}g_y - c_{gz}g_w)\,\mathbf e_{4125} \\ +\, &(c_{mx}g_x + c_{my}g_y + c_{mz}g_z - c_{gw}g_w)\,\mathbf e_{3215} \end{split}$$

Plane containing line $$\boldsymbol l$$ and orthogonal to sphere $$\mathbf s$$.

$$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} =\, &(l_{vz}s_y - l_{vy}s_z + l_{mx}s_u)\,\mathbf e_{4235} + (l_{vx}s_z - l_{vz}s_x + l_{my}s_u)\,\mathbf e_{4315} \\ +\, &(l_{vy}s_x - l_{vx}s_y + l_{mz}s_u)\,\mathbf e_{4125} + (l_{mx}s_x + l_{my}s_y + l_{mz}s_z)\,\mathbf e_{3215} \end{split}$$

Plane containing line $$\boldsymbol l$$ and orthogonal to plane $$\mathbf g$$.

$$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} =\, &(l_{vz}g_y - l_{vy}g_z)\,\mathbf e_{4235} + (l_{vx}g_z - l_{vz}g_x)\,\mathbf e_{4315} \\ +\, &(l_{vy}g_x - l_{vx}g_y)\,\mathbf e_{4125} + (l_{mx}g_x + l_{my}g_y + l_{mz}g_z)\,\mathbf e_{3215} \end{split}$$

Circle containing round point $$\mathbf a$$ and orthogonal to circle $$\mathbf c$$.

$$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} =\, &(a_yc_{gz} - a_zc_{gy} - a_wc_{vx})\,\mathbf e_{423} \,&+\, (a_zc_{gx} - a_xc_{gz} - a_wc_{vy})\,\mathbf e_{431} \\ +\, &(a_xc_{gy} - a_yc_{gx} - a_wc_{vz})\,\mathbf e_{412} \,&+\, (a_xc_{vx} + a_yc_{vy} + a_zc_{vz})\,\mathbf e_{321} \\ -\, &(a_wc_{mx} + a_xc_{gw} + a_uc_{gx})\,\mathbf e_{415} \,&+\, (a_zc_{my} - a_yc_{mz} - a_uc_{vx})\,\mathbf e_{235} \\ -\, &(a_wc_{my} + a_yc_{gw} + a_uc_{gy})\,\mathbf e_{425} \,&+\, (a_xc_{mz} - a_zc_{mx} - a_uc_{vy})\,\mathbf e_{315} \\ -\, &(a_wc_{mz} + a_zc_{gw} + a_uc_{gz})\,\mathbf e_{435} \,&+\, (a_yc_{mx} - a_xc_{my} - a_uc_{vz})\,\mathbf e_{125} \end{split}$$

Circle containing round point $$\mathbf a$$ and orthogonal to line $$\boldsymbol l$$.

$$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -\, &a_wl_{vx} \mathbf e_{423} - a_wl_{vy} \mathbf e_{431} - a_wl_{vz} \mathbf e_{412}\\ +\, &(a_xl_{vx} + a_yl_{vy} + a_zl_{vz})\,\mathbf e_{321} \\ -\, &a_wl_{mx} \mathbf e_{415} + (a_zl_{my} - a_yl_{mz} - a_ul_{vx})\,\mathbf e_{235} \\ -\, &a_wl_{my} \mathbf e_{425} + (a_xl_{mz} - a_zl_{mx} - a_ul_{vy})\,\mathbf e_{315} \\ -\, &a_wl_{mz} \mathbf e_{435} + (a_yl_{mx} - a_xl_{my} - a_ul_{vz})\,\mathbf e_{125} \end{split}$$

Plane containing flat point $$\mathbf p$$ and orthogonal to circle $$\mathbf c$$.

$$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} =\, &(p_yc_{gz} - p_zc_{gy} - p_wc_{vx})\,\mathbf e_{4235} \,&+\, (p_zc_{gx} - p_xc_{gz} - p_wc_{vy})\,\mathbf e_{4315} \\ +\, &(p_xc_{gy} - p_yc_{gx} - p_wc_{vz})\,\mathbf e_{4125} \,&+\, (p_xc_{vx} + p_yc_{vy} + p_zc_{vz})\,\mathbf e_{3215} \end{split}$$

Plane containing flat point $$\mathbf p$$ and orthogonal to line $$\boldsymbol l$$.

$$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = -\, &p_wl_{vx} \mathbf e_{4235} - p_wl_{vy} \mathbf e_{4315} - p_wl_{vz} \mathbf e_{4125} \\ +\, &(p_xl_{vx} + p_yl_{vy} + p_zl_{vz})\,\mathbf e_{3215} \end{split}$$

Sphere containing dipole $$\mathbf d$$ orthogonal to circle $$\mathbf c$$.

$$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} =\, &(d_{vx}c_{vx} + d_{vy}c_{vy} + d_{vz}c_{vz} + d_{mx}c_{gx} + d_{my}c_{gy} + d_{mz}c_{gz})\,\mathbf e_{1234} \\ +\, &(d_{vz}c_{my} - d_{vy}c_{mz} - d_{pw}c_{vx} + d_{py}c_{gz} - d_{pz}c_{gy} + d_{mx}c_{gw})\,\mathbf e_{4235} \\ +\, &(d_{vx}c_{mz} - d_{vz}c_{mx} - d_{pw}c_{vy} + d_{pz}c_{gx} - d_{px}c_{gz} + d_{my}c_{gw})\,\mathbf e_{4315} \\ +\, &(d_{vy}c_{mx} - d_{vx}c_{my} - d_{pw}c_{vz} + d_{px}c_{gy} - d_{py}c_{gx} + d_{mz}c_{gw})\,\mathbf e_{4125} \\ +\, &(d_{px}c_{vx} + d_{py}c_{vy} + d_{pz}c_{vz} + d_{mx}c_{mx} + d_{my}c_{my} + d_{mz}c_{mz})\,\mathbf e_{3215} \end{split}$$

Sphere containing dipole $$\mathbf d$$ and orthogonal to line $$\boldsymbol l$$.

$$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} =\, &(d_{vx}l_{vx} + d_{vy}l_{vy} + d_{vz}l_{vz})\,\mathbf e_{1234} \\ +\, &(d_{vz}l_{my} - d_{vy}l_{mz} - d_{pw}l_{vx})\,\mathbf e_{4235} \\ +\, &(d_{vx}l_{mz} - d_{vz}l_{mx} - d_{pw}l_{vy})\,\mathbf e_{4315} \\ +\, &(d_{vy}l_{mx} - d_{vx}l_{my} - d_{pw}l_{vz})\,\mathbf e_{4125} \\ +\, &(d_{px}l_{vx} + d_{py}l_{vy} + d_{pzl_{vz}} + d_{mx}l_{mx} + d_{my}l_{my} + d_{mz}l_{mz})\,\mathbf e_{3215} \end{split}$$

Sphere containing round point $$\mathbf a$$ and orthogonal to dipole $$\mathbf d$$.

$$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} =\, &(a_xd_{vx} + a_yd_{vy} + a_zd_{vz} - a_wd_{pw})\,\mathbf e_{1234} \\ +\, &(a_zd_{my} - a_yd_{mz} + a_wd_{px} - a_ud_{vx})\,\mathbf e_{4235} \\ +\, &(a_xd_{mz} - a_zd_{mx} + a_wd_{py} - a_ud_{vy})\,\mathbf e_{4315} \\ +\, &(a_yd_{mx} - a_xd_{my} + a_wd_{pz} - a_ud_{vz})\,\mathbf e_{4125} \\ +\, &(a_ud_{pw} - a_xd_{px} - a_yd_{py} - a_zd_{pz})\,\mathbf e_{3215} \end{split}$$

Sphere containing round point $$\mathbf a$$ and centered at flat point $$\mathbf p$$.

$$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = -\, &a_wp_w \mathbf e_{1234} + a_wp_x \mathbf e_{4235} + a_wp_y \mathbf e_{4315} + a_wp_z \mathbf e_{4125} \\ +\, &(a_up_w - a_xp_x - a_yp_y - a_zp_z)\,\mathbf e_{3215} \end{split}$$

See Also