Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) (Created page with "The ''connect'' operation is performed by taking the wedge product between the dual of an object ''A'' and another object ''B'' with lower grade. The result is an object ''C'' that is orthogonal to ''A'' and contains ''B'', allowing a projection of ''B'' onto ''A'' through a simple intersection of ''A'' and ''C''. The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined...") |
Eric Lengyel (talk | contribs) No edit summary |
||
(18 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
The '' | The ''expansion'' operation is performed by taking the [[wedge product]] between an object ''A'' and the [[antidual]] of another object ''B'' with higher grade. The result is an object ''C'' that contains ''A'' and is orthogonal to ''B'', allowing a [[projection]] of ''A'' onto ''B'' through a simple intersection of ''B'' and ''C''. | ||
The [[flat points]], [[lines]], [[planes]], [[round points]], [[dipoles]], [[circles]], and [[spheres]] appearing in the following tables are defined as follows: | The [[flat points]], [[lines]], [[planes]], [[round points]], [[dipoles]], [[circles]], and [[spheres]] appearing in the following tables are defined as follows: | ||
Line 13: | Line 13: | ||
{| class="wikitable" | {| class="wikitable" | ||
! Formula | ! Formula || Illustration | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Dipole containing round point $$\mathbf a$$ and orthogonal to sphere $$\mathbf s$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf a \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
-\, &( | =\, &(a_xs_u + a_ws_x)\,\mathbf e_{41} \,&+\, (a_ys_u + a_ws_y)\,\mathbf e_{42} \,&+\, (a_zs_u + a_ws_z)\,\mathbf e_{43} \\ | ||
+\, &(a_ys_z - a_zs_y)\,\mathbf e_{23} \,&+\, (a_zs_x - a_xs_z)\,\mathbf e_{31} \,&+\, (a_xs_y - a_ys_x)\,\mathbf e_{12} \\ | |||
-\, &(a_xs_w + a_us_x)\,\mathbf e_{15} \,&-\, (a_ys_w + a_us_y)\,\mathbf e_{25} \,&-\, (a_zs_w + a_us_z)\,\mathbf e_{35} + (a_us_u - a_ws_w)\,\mathbf e_{45} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:sphere_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Dipole containing round point $$\mathbf a$$ and orthogonal to plane $$\mathbf g$$. | ||
=\, & | |||
+\, &( | $$\begin{split}\mathbf a \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
-\, &( | =\, &a_wg_x \mathbf e_{41} + a_wg_y \mathbf e_{42} + a_wg_z \mathbf e_{43} \\ | ||
+\, &(a_yg_z - a_zg_y)\,\mathbf e_{23} + (a_zg_x - a_xg_z)\,\mathbf e_{31} + (a_xg_y - a_yg_x)\,\mathbf e_{12} \\ | |||
-\, &(a_xg_w + a_ug_x)\,\mathbf e_{15} - (a_yg_w + a_ug_y)\,\mathbf e_{25} - (a_zg_w + a_ug_z)\,\mathbf e_{35} - a_wg_w \mathbf e_{45} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:plane_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Circle containing dipole $$\mathbf d$$ and orthogonal to sphere $$\mathbf s$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(d_{vy}s_z - d_{vz}s_y - d_{mx}s_u)\,\mathbf e_{423} \,&+\, (d_{vz}s_x - d_{vx}s_z - d_{my}s_u)\,\mathbf e_{431} \\ | |||
+\, &(d_{vx}s_y - d_{vy}s_x - d_{mz}s_u)\,\mathbf e_{412} \,&-\, (d_{mx}s_x + d_{my}s_y + d_{mz}s_z)\,\mathbf e_{321} \\ | |||
-\, &(d_{vx}s_w + d_{pw}s_x + d_{px}s_u)\,\mathbf e_{415} \,&+\, (d_{pz}s_y - d_{py}s_z - d_{mx}s_w)\,\mathbf e_{235} \\ | |||
-\, &(d_{vy}s_w + d_{pw}s_y + d_{py}s_u)\,\mathbf e_{425} \,&+\, (d_{px}s_z - d_{pz}s_x - d_{my}s_w)\,\mathbf e_{315} \\ | |||
-\, &(d_{vz}s_w + d_{pw}s_z + d_{pz}s_u)\,\mathbf e_{435} \,&+\, (d_{py}s_x - d_{px}s_y - d_{mz}s_w)\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:sphere_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Circle containing dipole $$\mathbf d$$ and orthogonal to plane $$\mathbf g$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(d_{vy}g_z - d_{vz}g_y)\,\mathbf e_{423} \,&+\, (d_{vz}g_x - d_{vx}g_z)\,\mathbf e_{431} \\ | |||
+\, &(d_{vx}g_y - d_{vy}g_x)\,\mathbf e_{412} \,&-\, (d_{mx}g_x + d_{my}g_y + d_{mz}g_z)\,\mathbf e_{321} \\ | |||
-\, &(d_{vx}g_w + d_{pw}g_x)\,\mathbf e_{415} \,&+\, (d_{pz}g_y - d_{py}g_z - d_{mx}g_w)\,\mathbf e_{235} \\ | |||
-\, &(d_{vy}g_w + d_{pw}g_y)\,\mathbf e_{425} \,&+\, (d_{px}g_z - d_{pz}g_x - d_{my}g_w)\,\mathbf e_{315} \\ | |||
-\, &(d_{vz}g_w + d_{pw}g_z)\,\mathbf e_{435} \,&+\, (d_{py}g_x - d_{px}g_y - d_{mz}g_w)\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:plane_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Line containing flat point $$\mathbf p$$ and orthogonal to sphere $$\mathbf s$$. | ||
+\, &( | $$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &(p_xs_u + p_ws_x)\,\mathbf e_{415} \,&-\, (p_ys_u + p_ws_y)\,\mathbf e_{425} \,&-\, (p_zs_u + p_ws_z)\,\mathbf e_{435} \\ | |||
+\, &(p_zs_y - p_ys_z)\,\mathbf e_{235} \,&+\, (p_xs_z - p_zs_x)\,\mathbf e_{315} \,&+\, (p_ys_x - p_xs_y)\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:sphere_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Line containing flat point $$\mathbf p$$ and orthogonal to plane $$\mathbf g$$. | ||
+\, &( | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &p_wg_x \mathbf e_{415} - p_wg_y \mathbf e_{425} - p_wg_z \mathbf e_{435} \\ | |||
+\, &(p_zg_y - p_yg_z)\,\mathbf e_{235} + (p_xg_z - p_zg_x)\,\mathbf e_{315} + (p_yg_x - p_xg_y)\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:plane_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Sphere containing circle $$\mathbf c$$ and orthogonal to sphere $$\mathbf s$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
+\, &( | =\, &(c_{gw}s_u - c_{gx}s_x - c_{gy}s_y - c_{gz}s_z)\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(c_{vz}s_y - c_{vy}s_z + c_{mx}s_u - c_{gx}s_w)\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(c_{vx}s_z - c_{vz}s_x + c_{my}s_u - c_{gy}s_w)\,\mathbf e_{4315} \\ | ||
+\, &(c_{vy}s_x - c_{vx}s_y + c_{mz}s_u - c_{gz}s_w)\,\mathbf e_{4125} \\ | |||
+\, &(c_{mx}s_x + c_{my}s_y + c_{mz}s_z - c_{gw}s_w)\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Sphere containing circle $$\mathbf c$$ and orthogonal to plane $$\mathbf g$$. | ||
-\, &( | |||
+\, &( | $$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
+\, &( | -\, &(c_{gx}g_x + c_{gy}g_y + c_{gz}g_z)\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(c_{vz}g_y - c_{vy}g_z - c_{gx}g_w)\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(c_{vx}g_z - c_{vz}g_x - c_{gy}g_w)\,\mathbf e_{4315} \\ | ||
+\, &(c_{vy}g_x - c_{vx}g_y - c_{gz}g_w)\,\mathbf e_{4125} \\ | |||
+\, &(c_{mx}g_x + c_{my}g_y + c_{mz}g_z - c_{gw}g_w)\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf s^ | | style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and orthogonal to sphere $$\mathbf s$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(l_{vz}s_y - l_{vy}s_z + l_{mx}s_u)\,\mathbf e_{4235} + (l_{vx}s_z - l_{vz}s_x + l_{my}s_u)\,\mathbf e_{4315} \\ | |||
+\, &(l_{vy}s_x - l_{vx}s_y + l_{mz}s_u)\,\mathbf e_{4125} + (l_{mx}s_x + l_{my}s_y + l_{mz}s_z)\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf g^ | | style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and orthogonal to plane $$\mathbf g$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(l_{vz}g_y - l_{vy}g_z)\,\mathbf e_{4235} + (l_{vx}g_z - l_{vz}g_x)\,\mathbf e_{4315} \\ | |||
+\, &(l_{vy}g_x - l_{vx}g_y)\,\mathbf e_{4125} + (l_{mx}g_x + l_{my}g_y + l_{mz}g_z)\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Circle containing round point $$\mathbf a$$ and orthogonal to circle $$\mathbf c$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(a_yc_{gz} - a_zc_{gy} - a_wc_{vx})\,\mathbf e_{423} \,&+\, (a_zc_{gx} - a_xc_{gz} - a_wc_{vy})\,\mathbf e_{431} \\ | |||
+\, &(a_xc_{gy} - a_yc_{gx} - a_wc_{vz})\,\mathbf e_{412} \,&+\, (a_xc_{vx} + a_yc_{vy} + a_zc_{vz})\,\mathbf e_{321} \\ | |||
-\, &(a_wc_{mx} + a_xc_{gw} + a_uc_{gx})\,\mathbf e_{415} \,&+\, (a_zc_{my} - a_yc_{mz} - a_uc_{vx})\,\mathbf e_{235} \\ | |||
-\, &(a_wc_{my} + a_yc_{gw} + a_uc_{gy})\,\mathbf e_{425} \,&+\, (a_xc_{mz} - a_zc_{mx} - a_uc_{vy})\,\mathbf e_{315} \\ | |||
-\, &(a_wc_{mz} + a_zc_{gw} + a_uc_{gz})\,\mathbf e_{435} \,&+\, (a_yc_{mx} - a_xc_{my} - a_uc_{vz})\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:circle_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\boldsymbol l^ | | style="padding: 12px;" | Circle containing round point $$\mathbf a$$ and orthogonal to line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | |||
-\, &a_wl_{vx} \mathbf e_{423} - a_wl_{vy} \mathbf e_{431} - a_wl_{vz} \mathbf e_{412}\\ | |||
+\, &(a_xl_{vx} + a_yl_{vy} + a_zl_{vz})\,\mathbf e_{321} \\ | |||
-\, &a_wl_{mx} \mathbf e_{415} + (a_zl_{my} - a_yl_{mz} - a_ul_{vx})\,\mathbf e_{235} \\ | |||
-\, &a_wl_{my} \mathbf e_{425} + (a_xl_{mz} - a_zl_{mx} - a_ul_{vy})\,\mathbf e_{315} \\ | |||
-\, &a_wl_{mz} \mathbf e_{435} + (a_yl_{mx} - a_xl_{my} - a_ul_{vz})\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:line_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Plane containing flat point $$\mathbf p$$ and orthogonal to circle $$\mathbf c$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(p_yc_{gz} - p_zc_{gy} - p_wc_{vx})\,\mathbf e_{4235} \,&+\, (p_zc_{gx} - p_xc_{gz} - p_wc_{vy})\,\mathbf e_{4315} \\ | |||
+\, &(p_xc_{gy} - p_yc_{gx} - p_wc_{vz})\,\mathbf e_{4125} \,&+\, (p_xc_{vx} + p_yc_{vy} + p_zc_{vz})\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:circle_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\boldsymbol l^ | | style="padding: 12px;" | Plane containing flat point $$\mathbf p$$ and orthogonal to line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | |||
-\, &p_wl_{vx} \mathbf e_{4235} - p_wl_{vy} \mathbf e_{4315} - p_wl_{vz} \mathbf e_{4125} \\ | |||
+\, &(p_xl_{vx} + p_yl_{vy} + p_zl_{vz})\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:line_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Sphere containing dipole $$\mathbf d$$ orthogonal to circle $$\mathbf c$$. | ||
+\, &(c_{ | $$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
+\, &(c_{ | =\, &(d_{vx}c_{vx} + d_{vy}c_{vy} + d_{vz}c_{vz} + d_{mx}c_{gx} + d_{my}c_{gy} + d_{mz}c_{gz})\,\mathbf e_{1234} \\ | ||
+\, &(c_{ | +\, &(d_{vz}c_{my} - d_{vy}c_{mz} - d_{pw}c_{vx} + d_{py}c_{gz} - d_{pz}c_{gy} + d_{mx}c_{gw})\,\mathbf e_{4235} \\ | ||
+\, &(d_{vx}c_{mz} - d_{vz}c_{mx} - d_{pw}c_{vy} + d_{pz}c_{gx} - d_{px}c_{gz} + d_{my}c_{gw})\,\mathbf e_{4315} \\ | |||
+\, &(d_{vy}c_{mx} - d_{vx}c_{my} - d_{pw}c_{vz} + d_{px}c_{gy} - d_{py}c_{gx} + d_{mz}c_{gw})\,\mathbf e_{4125} \\ | |||
+\, &(d_{px}c_{vx} + d_{py}c_{vy} + d_{pz}c_{vz} + d_{mx}c_{mx} + d_{my}c_{my} + d_{mz}c_{mz})\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:circle_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\boldsymbol l^ | | style="padding: 12px;" | Sphere containing dipole $$\mathbf d$$ and orthogonal to line $$\boldsymbol l$$. | ||
+\, &(l_{ | $$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} | ||
+\, &(l_{ | =\, &(d_{vx}l_{vx} + d_{vy}l_{vy} + d_{vz}l_{vz})\,\mathbf e_{1234} \\ | ||
+\, &(l_{ | +\, &(d_{vz}l_{my} - d_{vy}l_{mz} - d_{pw}l_{vx})\,\mathbf e_{4235} \\ | ||
+\, &(d_{vx}l_{mz} - d_{vz}l_{mx} - d_{pw}l_{vy})\,\mathbf e_{4315} \\ | |||
+\, &(d_{vy}l_{mx} - d_{vx}l_{my} - d_{pw}l_{vz})\,\mathbf e_{4125} \\ | |||
+\, &(d_{px}l_{vx} + d_{py}l_{vy} + d_{pzl_{vz}} + d_{mx}l_{mx} + d_{my}l_{my} + d_{mz}l_{mz})\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:line_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Sphere containing round point $$\mathbf a$$ and orthogonal to dipole $$\mathbf d$$. | ||
=\, &( | |||
+\, &( | $$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} | ||
+\, &( | =\, &(a_xd_{vx} + a_yd_{vy} + a_zd_{vz} - a_wd_{pw})\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(a_zd_{my} - a_yd_{mz} + a_wd_{px} - a_ud_{vx})\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(a_xd_{mz} - a_zd_{mx} + a_wd_{py} - a_ud_{vy})\,\mathbf e_{4315} \\ | ||
+\, &(a_yd_{mx} - a_xd_{my} + a_wd_{pz} - a_ud_{vz})\,\mathbf e_{4125} \\ | |||
+\, &(a_ud_{pw} - a_xd_{px} - a_yd_{py} - a_zd_{pz})\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf | | style="padding: 12px;" | Sphere containing round point $$\mathbf a$$ and centered at flat point $$\mathbf p$$. | ||
-\, & | |||
+\, &( | $$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &a_wp_w \mathbf e_{1234} + a_wp_x \mathbf e_{4235} + a_wp_y \mathbf e_{4315} + a_wp_z \mathbf e_{4125} \\ | |||
+\, &(a_up_w - a_xp_x - a_yp_y - a_zp_z)\,\mathbf e_{3215} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: | | style="padding: 24px;" | [[Image:point_connect_round.svg|200px]] | ||
|} | |} | ||
Latest revision as of 06:50, 24 October 2023
The expansion operation is performed by taking the wedge product between an object A and the antidual of another object B with higher grade. The result is an object C that contains A and is orthogonal to B, allowing a projection of A onto B through a simple intersection of B and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$