Containers: Difference between revisions

From Conformal Geometric Algebra
Jump to navigation Jump to search
(Created page with "The ''container'' of a round object (a round point, dipole, circle, or sphere) is the smallest sphere that contains it. The container of an object $$\mathbf x$$ is denoted by $$\operatorname{con}(\mathbf x)$$, and it is given by the connect of $$\mathbf x$$ with its own carrier: :$$\operatorname{con}(\mathbf x) = \operatorname{car}(\mathbf x)^* \wedge \mathbf x$$ . The squared radius of an object's container has the same sign as the squared radi...")
 
No edit summary
 
(3 intermediate revisions by the same user not shown)
Line 1: Line 1:
The ''container'' of a round object (a [[round point]], [[dipole]], [[circle]], or [[sphere]]) is the smallest sphere that contains it. The container of an object $$\mathbf x$$ is denoted by $$\operatorname{con}(\mathbf x)$$, and it is given by the [[connect]] of $$\mathbf x$$ with its own [[carrier]]:
The ''container'' of a round object (a [[round point]], [[dipole]], [[circle]], or [[sphere]]) is the smallest sphere that contains it. The container of an object $$\mathbf u$$ is denoted by $$\operatorname{con}(\mathbf u)$$, and it is given by the [[expansion]] of $$\mathbf u$$ into its own [[carrier]]:


:$$\operatorname{con}(\mathbf x) = \operatorname{car}(\mathbf x)^* \wedge \mathbf x$$ .
:$$\operatorname{con}(\mathbf u) = \mathbf u \wedge \operatorname{car}(\mathbf u)^\unicode["segoe ui symbol"]{x2606}$$ .


The squared radius of an object's container has the same sign as the squared radius of the object itself. That is, a real object has a real container, and an imaginary object has an imaginary container.
The squared radius of an object's container has the same sign as the squared radius of the object itself. That is, a real object has a real container, and an imaginary object has an imaginary container.
Line 21: Line 21:
| style="padding: 12px;" | [[Dipole]]
| style="padding: 12px;" | [[Dipole]]
| style="padding: 12px;" | $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
| style="padding: 12px;" | $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
| style="padding: 12px;" | $$\begin{split}\operatorname{con}(\mathbf d) =
| style="padding: 12px;" | $$\begin{split}\operatorname{con}(\mathbf d)
&-(d_{vx}^2 + d_{vy}^2 + d_{vz}^2)\,\mathbf e_{1234} \\
&= (d_{vx}^2 + d_{vy}^2 + d_{vz}^2)\,\mathbf e_{1234} \\
&+ (d_{vy} d_{mz} - d_{vz} d_{my} + d_{vx} d_{pw})\,\mathbf e_{4235} \\
&+ (d_{vz} d_{my} - d_{vy} d_{mz} - d_{vx} d_{pw})\,\mathbf e_{4235} \\
&+ (d_{vz} d_{mx} - d_{vx} d_{mz} + d_{vy} d_{pw})\,\mathbf e_{4315} \\
&+ (d_{vx} d_{mz} - d_{vz} d_{mx} - d_{vy} d_{pw})\,\mathbf e_{4315} \\
&+ (d_{vx} d_{my} - d_{vy} d_{mx} + d_{vz} d_{pw})\,\mathbf e_{4125} \\
&+ (d_{vy} d_{mx} - d_{vx} d_{my} - d_{vz} d_{pw})\,\mathbf e_{4125} \\
&- (d_{mx}^2 + d_{my}^2 + d_{mz}^2 + d_{vx} d_{px} + d_{vy} d_{py} + d_{vz} d_{pz})\,\mathbf e_{3215}\end{split}$$
&+ (d_{mx}^2 + d_{my}^2 + d_{mz}^2 + d_{vx} d_{px} + d_{vy} d_{py} + d_{vz} d_{pz})\,\mathbf e_{3215}\end{split}$$
|-
|-
| style="padding: 12px;" | [[Circle]]
| style="padding: 12px;" | [[Circle]]
Line 39: Line 39:
| style="padding: 12px;" | [[Sphere]]
| style="padding: 12px;" | [[Sphere]]
| style="padding: 12px;" | $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$
| style="padding: 12px;" | $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$
| style="padding: 12px;" | $$\begin{split}\operatorname{con}(\mathbf s) =
| style="padding: 12px;" | $$\begin{split}\operatorname{con}(\mathbf s)
&-s_u^2 \mathbf e_{1234} \\
&= s_u^2 \mathbf e_{1234} \\
&- s_xs_u \mathbf e_{4235} \\
&+ s_xs_u \mathbf e_{4235} \\
&- s_ys_u \mathbf e_{4315} \\
&+ s_ys_u \mathbf e_{4315} \\
&- s_zs_u \mathbf e_{4125} \\
&+ s_zs_u \mathbf e_{4125} \\
&- s_ws_u \mathbf e_{3215}\end{split}$$
&+ s_ws_u \mathbf e_{3215}\end{split}$$
|}
|}



Latest revision as of 22:59, 3 April 2024

The container of a round object (a round point, dipole, circle, or sphere) is the smallest sphere that contains it. The container of an object $$\mathbf u$$ is denoted by $$\operatorname{con}(\mathbf u)$$, and it is given by the expansion of $$\mathbf u$$ into its own carrier:

$$\operatorname{con}(\mathbf u) = \mathbf u \wedge \operatorname{car}(\mathbf u)^\unicode["segoe ui symbol"]{x2606}$$ .

The squared radius of an object's container has the same sign as the squared radius of the object itself. That is, a real object has a real container, and an imaginary object has an imaginary container.

The following table lists the containers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.

Type Definition Container
Round point $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$ $$\begin{split}\operatorname{con}(\mathbf a) = &-a_w^2 \mathbf e_{1234} \\ &+ a_xa_w \mathbf e_{4235} \\ &+ a_ya_w \mathbf e_{4315} \\ &+ a_za_w \mathbf e_{4125} \\ &+ (a_wa_u - a_x^2 - a_y^2 - a_z^2) \mathbf e_{3215}\end{split}$$
Dipole $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$ $$\begin{split}\operatorname{con}(\mathbf d) &= (d_{vx}^2 + d_{vy}^2 + d_{vz}^2)\,\mathbf e_{1234} \\ &+ (d_{vz} d_{my} - d_{vy} d_{mz} - d_{vx} d_{pw})\,\mathbf e_{4235} \\ &+ (d_{vx} d_{mz} - d_{vz} d_{mx} - d_{vy} d_{pw})\,\mathbf e_{4315} \\ &+ (d_{vy} d_{mx} - d_{vx} d_{my} - d_{vz} d_{pw})\,\mathbf e_{4125} \\ &+ (d_{mx}^2 + d_{my}^2 + d_{mz}^2 + d_{vx} d_{px} + d_{vy} d_{py} + d_{vz} d_{pz})\,\mathbf e_{3215}\end{split}$$
Circle $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$ $$\begin{split}\operatorname{con}(\mathbf c) = -\,&(c_{gx}^2 + c_{gy}^2 + c_{gz}^2)\,\mathbf e_{1234} \\ +\,&(c_{gy} c_{vz} - c_{gz} c_{vy} - c_{gx} c_{gw})\,\mathbf e_{4235} \\ +\,&(c_{gz} c_{vx} - c_{gx} c_{vz} - c_{gy} c_{gw})\,\mathbf e_{4315} \\ +\,&(c_{gx} c_{vy} - c_{gy} c_{vx} - c_{gz} c_{gw})\,\mathbf e_{4125} \\ +\,&(c_{gx} c_{mx} + c_{gy} c_{my} + c_{gz} c_{mz} - c_{gw}^2)\,\mathbf e_{3215}\end{split}$$
Sphere $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$ $$\begin{split}\operatorname{con}(\mathbf s) &= s_u^2 \mathbf e_{1234} \\ &+ s_xs_u \mathbf e_{4235} \\ &+ s_ys_u \mathbf e_{4315} \\ &+ s_zs_u \mathbf e_{4125} \\ &+ s_ws_u \mathbf e_{3215}\end{split}$$

See Also