Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 36: | Line 36: | ||
$$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(d_{vy}s_z - d_{vz}s_y - d_{mx}s_u)\,\mathbf e_{423} \,&+\, (d_{vz}s_x - d_{vx}s_z - d_{my}s_u)\,\mathbf e_{431} \\ | ||
+\, &( | +\, &(d_{vx}s_y - d_{vy}s_x - d_{mz}s_u)\,\mathbf e_{412} \,&-\, (d_{mx}s_x + d_{my}s_y + d_{mz}s_z)\,\mathbf e_{321} \\ | ||
-\, &( | -\, &(d_{vx}s_w + d_{pw}s_x + d_{px}s_u)\,\mathbf e_{415} \,&+\, (d_{pz}s_y - d_{py}s_z - d_{mx}s_w)\,\mathbf e_{235} \\ | ||
-\, &( | -\, &(d_{vy}s_w + d_{pw}s_y + d_{py}s_u)\,\mathbf e_{425} \,&+\, (d_{px}s_z - d_{pz}s_x - d_{my}s_w)\,\mathbf e_{315} \\ | ||
-\, &( | -\, &(d_{vz}s_w + d_{pw}s_z + d_{pz}s_u)\,\mathbf e_{435} \,&+\, (d_{py}s_x - d_{px}s_y - d_{mz}s_w)\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_dipole.svg|200px]] | ||
Line 47: | Line 47: | ||
$$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(d_{vy}g_z - d_{vz}g_y)\,\mathbf e_{423} \,&+\, (d_{vz}g_x - d_{vx}g_z)\,\mathbf e_{431} \\ | ||
+\, &( | +\, &(d_{vx}g_y - d_{vy}g_x)\,\mathbf e_{412} \,&-\, (d_{mx}g_x + d_{my}g_y + d_{mz}g_z)\,\mathbf e_{321} \\ | ||
-\, &( | -\, &(d_{vx}g_w + d_{pw}g_x)\,\mathbf e_{415} \,&+\, (d_{pz}g_y - d_{py}g_z - d_{mx}g_w)\,\mathbf e_{235} \\ | ||
-\, &( | -\, &(d_{vy}g_w + d_{pw}g_y)\,\mathbf e_{425} \,&+\, (d_{px}g_z - d_{pz}g_x - d_{my}g_w)\,\mathbf e_{315} \\ | ||
-\, &( | -\, &(d_{vz}g_w + d_{pw}g_z)\,\mathbf e_{435} \,&+\, (d_{py}g_x - d_{px}g_y - d_{mz}g_w)\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_dipole.svg|200px]] | ||
Line 58: | Line 58: | ||
$$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &( | -\, &(p_xs_u + p_ws_x)\,\mathbf e_{415} \,&-\, (p_ys_u + p_ws_y)\,\mathbf e_{425} \,&-\, (p_zs_u + p_ws_z)\,\mathbf e_{435} \\ | ||
+\, &( | +\, &(p_zs_y - p_ys_z)\,\mathbf e_{235} \,&+\, (p_xs_z - p_zs_x)\,\mathbf e_{315} \,&+\, (p_ys_x - p_xs_y)\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_point.svg|200px]] | ||
Line 66: | Line 66: | ||
$$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
-\, & | -\, &p_wg_x \mathbf e_{415} - p_wg_y \mathbf e_{425} - p_wg_z \mathbf e_{435} \\ | ||
+\, &( | +\, &(p_zg_y - p_yg_z)\,\mathbf e_{235} + (p_xg_z - p_zg_x)\,\mathbf e_{315} + (p_yg_x - p_xg_y)\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_point.svg|200px]] |
Revision as of 06:40, 24 October 2023
The expansion operation is performed by taking the wedge product between an object A and the antidual of another object B with higher grade. The result is an object C that contains A and is orthogonal to B, allowing a projection of A onto B through a simple intersection of B and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$