Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 74: | Line 74: | ||
$$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(c_{gw}s_u - c_{gx}s_x - c_{gy}s_y - c_{gz}s_z)\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(c_{vz}s_y - c_{vy}s_z + c_{mx}s_u - c_{gx}s_w)\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(c_{vx}s_z - c_{vz}s_x + c_{my}s_u - c_{gy}s_w)\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(c_{vy}s_x - c_{vx}s_y + c_{mz}s_u - c_{gz}s_w)\,\mathbf e_{4125} \\ | ||
+\, &( | +\, &(c_{mx}s_x + c_{my}s_y + c_{mz}s_z - c_{gw}s_w)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | ||
Line 85: | Line 85: | ||
$$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &( | -\, &(c_{gx}g_x + c_{gy}g_y + c_{gz}g_z)\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(c_{vz}g_y - c_{vy}g_z - c_{gx}g_w)\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(c_{vx}g_z - c_{vz}g_x - c_{gy}g_w)\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(c_{vy}g_x - c_{vx}g_y - c_{gz}g_w)\,\mathbf e_{4125} \\ | ||
+\, &( | +\, &(c_{mx}g_x + c_{my}g_y + c_{mz}g_z - c_{gw}g_w)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | ||
Line 96: | Line 96: | ||
$$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(l_{vz}s_y - l_{vy}s_z + l_{mx}s_u)\,\mathbf e_{4235} + (l_{vx}s_z - l_{vz}s_x + l_{my}s_u)\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(l_{vy}s_x - l_{vx}s_y + l_{mz}s_u)\,\mathbf e_{4125} + (l_{mx}s_x + l_{my}s_y + l_{mz}s_z)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | ||
Line 104: | Line 104: | ||
$$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(l_{vz}g_y - l_{vy}g_z)\,\mathbf e_{4235} + (l_{vx}g_z - l_{vz}g_x)\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(l_{vy}g_x - l_{vx}g_y)\,\mathbf e_{4125} + (l_{mx}g_x + l_{my}g_y + l_{mz}g_z)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | ||
Line 112: | Line 112: | ||
$$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(a_yc_{gz} - a_zc_{gy} - a_wc_{vx})\,\mathbf e_{423} \,&+\, (a_zc_{gx} - a_xc_{gz} - a_wc_{vy})\,\mathbf e_{431} \\ | ||
+\, &( | +\, &(a_xc_{gy} - a_yc_{gx} - a_wc_{vz})\,\mathbf e_{412} \,&+\, (a_xc_{vx} + a_yc_{vy} + a_zc_{vz})\,\mathbf e_{321} \\ | ||
-\, &( | -\, &(a_wc_{mx} + a_xc_{gw} + a_uc_{gx})\,\mathbf e_{415} \,&+\, (a_zc_{my} - a_yc_{mz} - a_uc_{vx})\,\mathbf e_{235} \\ | ||
-\, &( | -\, &(a_wc_{my} + a_yc_{gw} + a_uc_{gy})\,\mathbf e_{425} \,&+\, (a_xc_{mz} - a_zc_{mx} - a_uc_{vy})\,\mathbf e_{315} \\ | ||
-\, &( | -\, &(a_wc_{mz} + a_zc_{gw} + a_uc_{gz})\,\mathbf e_{435} \,&+\, (a_yc_{mx} - a_xc_{my} - a_uc_{vz})\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:circle_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:circle_connect_round.svg|200px]] | ||
Line 123: | Line 123: | ||
$$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | ||
-\, & | -\, &a_wl_{vx} \mathbf e_{423} - a_wl_{vy} \mathbf e_{431} - a_wl_{vz} \mathbf e_{412}\\ | ||
+\, &( | +\, &(a_xl_{vx} + a_yl_{vy} + a_zl_{vz})\,\mathbf e_{321} \\ | ||
-\, & | -\, &a_wl_{mx} \mathbf e_{415} + (a_zl_{my} - a_yl_{mz} - a_ul_{vx})\,\mathbf e_{235} \\ | ||
-\, & | -\, &a_wl_{my} \mathbf e_{425} + (a_xl_{mz} - a_zl_{mx} - a_ul_{vy})\,\mathbf e_{315} \\ | ||
-\, & | -\, &a_wl_{mz} \mathbf e_{435} + (a_yl_{mx} - a_xl_{my} - a_ul_{vz})\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:line_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:line_connect_round.svg|200px]] | ||
Line 134: | Line 134: | ||
$$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(p_yc_{gz} - p_zc_{gy} - p_wc_{vx})\,\mathbf e_{4235} \,&+\, (p_zc_{gx} - p_xc_{gz} - p_wc_{vy})\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(p_xc_{gy} - p_yc_{gx} - p_wc_{vz})\,\mathbf e_{4125} \,&+\, (p_xc_{vx} + p_yc_{vy} + p_zc_{vz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:circle_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:circle_connect_point.svg|200px]] | ||
Line 142: | Line 142: | ||
$$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | ||
-\, & | -\, &p_wl_{vx} \mathbf e_{4235} - p_wl_{vy} \mathbf e_{4315} - p_wl_{vz} \mathbf e_{4125} \\ | ||
+\, &( | +\, &(p_xl_{vx} + p_yl_{vy} + p_zl_{vz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:line_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:line_connect_point.svg|200px]] |
Revision as of 06:46, 24 October 2023
The expansion operation is performed by taking the wedge product between an object A and the antidual of another object B with higher grade. The result is an object C that contains A and is orthogonal to B, allowing a projection of A onto B through a simple intersection of B and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$