Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 32: | Line 32: | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf d | | style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf d | ||
=\, &(s_yd_{vz} - | =\, &(s_zd_{vy} - s_yd_{vz} - s_ud_{mx})\,\mathbf e_{423} \,&+\, (s_xd_{vz} - s_zd_{vx} - s_ud_{my})\,\mathbf e_{431} \\ | ||
+\, &(s_xd_{vy} - | +\, &(s_yd_{vx} - s_xd_{vy} - s_ud_{mz})\,\mathbf e_{412} \,&-\, (s_xd_{mx} + s_yd_{my} + s_zd_{mz})\,\mathbf e_{321} \\ | ||
-\, &(s_xd_{pw} + s_wd_{vx} + s_ud_{px})\,\mathbf e_{415} \,&+\, (s_yd_{pz} - s_zd_{py} - s_wd_{mx})\,\mathbf e_{235} \\ | |||
-\, &(s_yd_{pw} + s_wd_{vy} + s_ud_{py})\,\mathbf e_{425} \,&+\, (s_zd_{px} - s_xd_{pz} - s_wd_{my})\,\mathbf e_{315} \\ | |||
-\, &(s_zd_{pw} + s_wd_{vz} + s_ud_{pz})\,\mathbf e_{435} \,&+\, (s_xd_{py} - s_yd_{px} - s_wd_{mz})\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 12px;" | Circle orthogonal to sphere $$\mathbf s$$ and containing dipole $$\mathbf d$$. | | style="padding: 12px;" | Circle orthogonal to sphere $$\mathbf s$$ and containing dipole $$\mathbf d$$. | ||
Line 42: | Line 42: | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf d | | style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf d | ||
=\, &( | =\, &(g_zd_{vy} - g_yd_{vz})\,\mathbf e_{423} \,&+\, (g_xd_{vz} - g_zd_{vx})\,\mathbf e_{431} \\ | ||
+\, &( | +\, &(g_yd_{vx} - g_xd_{vy})\,\mathbf e_{412} \,&-\, (g_xd_{mx} + g_yd_{my} + g_zd_{mz})\,\mathbf e_{321} \\ | ||
-\, &(g_xd_{pw} + g_wd_{vx})\,\mathbf e_{415} \,&+\, (g_yd_{pz} - g_zd_{py} - g_wd_{mx})\,\mathbf e_{235} \\ | |||
-\, &(g_yd_{pw} + g_wd_{vy})\,\mathbf e_{425} \,&+\, (g_zd_{px} - g_xd_{pz} - g_wd_{my})\,\mathbf e_{315} \\ | |||
-\, &(g_zd_{pw} + g_wd_{vz})\,\mathbf e_{435} \,&+\, (g_xd_{py} - g_yd_{px} - g_wd_{mz})\,\mathbf e_{125} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 12px;" | Circle orthogonal to plane $$\mathbf g$$ and containing dipole $$\mathbf d$$. | | style="padding: 12px;" | Circle orthogonal to plane $$\mathbf g$$ and containing dipole $$\mathbf d$$. | ||
| style="padding: 12px;" | [[Image:plane_connect_dipole.svg|250px]] | | style="padding: 12px;" | [[Image:plane_connect_dipole.svg|250px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf p | | style="padding: 12px;" | $$\begin{split}\mathbf s^* \wedge \mathbf p = | ||
-\, &(s_xp_w + s_up_x)\,\mathbf e_{415} \,&-\, (s_yp_w + s_up_y)\,\mathbf e_{425} \,&-\, (s_zp_w + s_up_z)\,\mathbf e_{435} \\ | |||
+\, &(s_zp_y | +\, &(s_yp_z - s_zp_y)\,\mathbf e_{235} \,&+\, (s_zp_x - s_xp_z)\,\mathbf e_{315} \,&+\, (s_xp_y - s_yp_x)\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 12px;" | Line orthogonal to sphere $$\mathbf s$$ and containing flat point $$\mathbf p$$. | | style="padding: 12px;" | Line orthogonal to sphere $$\mathbf s$$ and containing flat point $$\mathbf p$$. | ||
| style="padding: 12px;" | [[Image:sphere_connect_point.svg|250px]] | | style="padding: 12px;" | [[Image:sphere_connect_point.svg|250px]] | ||
|- | |- | ||
| style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf p | | style="padding: 12px;" | $$\begin{split}\mathbf g^* \wedge \mathbf p = | ||
-\, &g_xp_w \mathbf e_{415} - g_yp_w \mathbf e_{425} - g_zp_w \mathbf e_{435} \\ | |||
+\, &(g_zp_y | +\, &(g_yp_z - g_zp_y)\,\mathbf e_{235} + (g_zp_x - g_xp_z)\,\mathbf e_{315} + (g_xp_y - g_yp_x)\,\mathbf e_{125} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 12px;" | Line orthogonal to plane $$\mathbf g$$ and containing flat point $$\mathbf p$$. | | style="padding: 12px;" | Line orthogonal to plane $$\mathbf g$$ and containing flat point $$\mathbf p$$. |
Revision as of 22:22, 25 August 2023
The connect operation is performed by taking the wedge product between the dual of an object A and another object B with lower grade. The result is an object C that is orthogonal to A and contains B, allowing a projection of B onto A through a simple intersection of A and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$