Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 17: | Line 17: | ||
| style="padding: 12px;" | Dipole orthogonal to sphere $$\mathbf s$$ and containing round point $$\mathbf a$$. | | style="padding: 12px;" | Dipole orthogonal to sphere $$\mathbf s$$ and containing round point $$\mathbf a$$. | ||
$$\begin{split}\mathbf s^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf a \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(s_xa_w + s_ua_x)\,\mathbf e_{41} \,&+\, (s_ya_w + s_ua_y)\,\mathbf e_{42} \,&+\, (s_za_w + s_ua_z)\,\mathbf e_{43} \\ | |||
+\, &(s_ya_z | +\, &(s_za_y - s_ya_z)\,\mathbf e_{23} \,&+\, (s_xa_z - s_za_x)\,\mathbf e_{31} \,&+\, (s_ya_x - s_xa_y)\,\mathbf e_{12} \\ | ||
-\, &(s_xa_u + s_wa_x)\,\mathbf e_{15} \,&-\, (s_ya_u + s_wa_y)\,\mathbf e_{25} \,&-\, (s_za_u + s_wa_z)\,\mathbf e_{35} + (s_ua_u - s_wa_w)\,\mathbf e_{45} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_round.svg|200px]] | ||
Line 26: | Line 26: | ||
| style="padding: 12px;" | Dipole orthogonal to plane $$\mathbf g$$ and containing round point $$\mathbf a$$. | | style="padding: 12px;" | Dipole orthogonal to plane $$\mathbf g$$ and containing round point $$\mathbf a$$. | ||
$$\begin{split}\mathbf g^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf a \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &g_xa_w \mathbf e_{41} + g_ya_w \mathbf e_{42} + g_za_w \mathbf e_{43} \\ | |||
+\, &(g_ya_z | +\, &(g_za_y - g_ya_z)\,\mathbf e_{23} + (g_xa_z - g_za_x)\,\mathbf e_{31} + (g_ya_x - g_xa_y)\,\mathbf e_{12} \\ | ||
-\, &(g_xa_u + g_wa_x)\,\mathbf e_{15} - (g_ya_u + g_wa_y)\,\mathbf e_{25} - (g_za_u + g_wa_z)\,\mathbf e_{35} - g_wa_w \mathbf e_{45} | |||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_round.svg|200px]] | ||
Line 35: | Line 35: | ||
| style="padding: 12px;" | Circle orthogonal to sphere $$\mathbf s$$ and containing dipole $$\mathbf d$$. | | style="padding: 12px;" | Circle orthogonal to sphere $$\mathbf s$$ and containing dipole $$\mathbf d$$. | ||
$$\begin{split}\mathbf s^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(s_zd_{vy} - s_yd_{vz} - s_ud_{mx})\,\mathbf e_{423} \,&+\, (s_xd_{vz} - s_zd_{vx} - s_ud_{my})\,\mathbf e_{431} \\ | =\, &(s_zd_{vy} - s_yd_{vz} - s_ud_{mx})\,\mathbf e_{423} \,&+\, (s_xd_{vz} - s_zd_{vx} - s_ud_{my})\,\mathbf e_{431} \\ | ||
+\, &(s_yd_{vx} - s_xd_{vy} - s_ud_{mz})\,\mathbf e_{412} \,&-\, (s_xd_{mx} + s_yd_{my} + s_zd_{mz})\,\mathbf e_{321} \\ | +\, &(s_yd_{vx} - s_xd_{vy} - s_ud_{mz})\,\mathbf e_{412} \,&-\, (s_xd_{mx} + s_yd_{my} + s_zd_{mz})\,\mathbf e_{321} \\ | ||
Line 46: | Line 46: | ||
| style="padding: 12px;" | Circle orthogonal to plane $$\mathbf g$$ and containing dipole $$\mathbf d$$. | | style="padding: 12px;" | Circle orthogonal to plane $$\mathbf g$$ and containing dipole $$\mathbf d$$. | ||
$$\begin{split}\mathbf g^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(g_zd_{vy} - g_yd_{vz})\,\mathbf e_{423} \,&+\, (g_xd_{vz} - g_zd_{vx})\,\mathbf e_{431} \\ | =\, &(g_zd_{vy} - g_yd_{vz})\,\mathbf e_{423} \,&+\, (g_xd_{vz} - g_zd_{vx})\,\mathbf e_{431} \\ | ||
+\, &(g_yd_{vx} - g_xd_{vy})\,\mathbf e_{412} \,&-\, (g_xd_{mx} + g_yd_{my} + g_zd_{mz})\,\mathbf e_{321} \\ | +\, &(g_yd_{vx} - g_xd_{vy})\,\mathbf e_{412} \,&-\, (g_xd_{mx} + g_yd_{my} + g_zd_{mz})\,\mathbf e_{321} \\ | ||
Line 57: | Line 57: | ||
| style="padding: 12px;" | Line orthogonal to sphere $$\mathbf s$$ and containing flat point $$\mathbf p$$. | | style="padding: 12px;" | Line orthogonal to sphere $$\mathbf s$$ and containing flat point $$\mathbf p$$. | ||
$$\begin{split}\mathbf s^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &(s_xp_w + s_up_x)\,\mathbf e_{415} \,&-\, (s_yp_w + s_up_y)\,\mathbf e_{425} \,&-\, (s_zp_w + s_up_z)\,\mathbf e_{435} \\ | -\, &(s_xp_w + s_up_x)\,\mathbf e_{415} \,&-\, (s_yp_w + s_up_y)\,\mathbf e_{425} \,&-\, (s_zp_w + s_up_z)\,\mathbf e_{435} \\ | ||
+\, &(s_yp_z - s_zp_y)\,\mathbf e_{235} \,&+\, (s_zp_x - s_xp_z)\,\mathbf e_{315} \,&+\, (s_xp_y - s_yp_x)\,\mathbf e_{125} | +\, &(s_yp_z - s_zp_y)\,\mathbf e_{235} \,&+\, (s_zp_x - s_xp_z)\,\mathbf e_{315} \,&+\, (s_xp_y - s_yp_x)\,\mathbf e_{125} | ||
Line 65: | Line 65: | ||
| style="padding: 12px;" | Line orthogonal to plane $$\mathbf g$$ and containing flat point $$\mathbf p$$. | | style="padding: 12px;" | Line orthogonal to plane $$\mathbf g$$ and containing flat point $$\mathbf p$$. | ||
$$\begin{split}\mathbf g^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &g_xp_w \mathbf e_{415} - g_yp_w \mathbf e_{425} - g_zp_w \mathbf e_{435} \\ | -\, &g_xp_w \mathbf e_{415} - g_yp_w \mathbf e_{425} - g_zp_w \mathbf e_{435} \\ | ||
+\, &(g_yp_z - g_zp_y)\,\mathbf e_{235} + (g_zp_x - g_xp_z)\,\mathbf e_{315} + (g_xp_y - g_yp_x)\,\mathbf e_{125} | +\, &(g_yp_z - g_zp_y)\,\mathbf e_{235} + (g_zp_x - g_xp_z)\,\mathbf e_{315} + (g_xp_y - g_yp_x)\,\mathbf e_{125} | ||
Line 73: | Line 73: | ||
| style="padding: 12px;" | Sphere orthogonal to sphere $$\mathbf s$$ and containing circle $$\mathbf c$$. | | style="padding: 12px;" | Sphere orthogonal to sphere $$\mathbf s$$ and containing circle $$\mathbf c$$. | ||
$$\begin{split}\mathbf s^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(s_xc_{gx} | =\, &(s_uc_{gw} - s_xc_{gx} - s_yc_{gy} - s_zc_{gz})\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(s_yc_{vz} - s_zc_{vy} + s_uc_{mx} - s_wc_{gx})\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(s_zc_{vx} - s_xc_{vz} + s_uc_{my} - s_wc_{gy})\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(s_xc_{vy} - s_yc_{vx} + s_uc_{mz} - s_wc_{gz})\,\mathbf e_{4125} \\ | ||
+\, &( | +\, &(s_xc_{mx} + s_yc_{my} + s_zc_{mz} - s_wc_{gw})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | ||
Line 84: | Line 84: | ||
| style="padding: 12px;" | Sphere orthogonal to plane $$\mathbf g$$ and containing circle $$\mathbf c$$. | | style="padding: 12px;" | Sphere orthogonal to plane $$\mathbf g$$ and containing circle $$\mathbf c$$. | ||
$$\begin{split}\mathbf g^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &(g_xc_{gx} + g_yc_{gy} + g_zc_{gz})\,\mathbf e_{1234} \\ | |||
+\, &(g_zc_{vy} - | +\, &(g_yc_{vz} - g_zc_{vy} - g_wc_{gx})\,\mathbf e_{4235} \\ | ||
+\, &(g_xc_{vz} - | +\, &(g_zc_{vx} - g_xc_{vz} - g_wc_{gy})\,\mathbf e_{4315} \\ | ||
+\, &(g_yc_{vx} - | +\, &(g_xc_{vy} - g_yc_{vx} - g_wc_{gz})\,\mathbf e_{4125} \\ | ||
+\, &( | +\, &(g_xc_{mx} + g_yc_{my} + g_zc_{mz} - g_wc_{gw})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | ||
Line 95: | Line 95: | ||
| style="padding: 12px;" | Plane orthogonal to sphere $$\mathbf s$$ and containing line $$\boldsymbol l$$. | | style="padding: 12px;" | Plane orthogonal to sphere $$\mathbf s$$ and containing line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf s^\unicode["segoe ui symbol"]{ | $$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(s_yl_{vz} - s_zl_{vy} + s_ul_{mx})\,\mathbf e_{4235} + (s_zl_{vx} - s_xl_{vz} + s_ul_{my})\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(s_xl_{vy} - s_yl_{vx} + s_ul_{mz})\,\mathbf e_{4125} + (s_xl_{mx} + s_yl_{my} + s_zl_{mz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | ||
Line 103: | Line 103: | ||
| style="padding: 12px;" | Plane orthogonal to plane $$\mathbf g$$ and containing line $$\boldsymbol l$$. | | style="padding: 12px;" | Plane orthogonal to plane $$\mathbf g$$ and containing line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf g^\unicode["segoe ui symbol"]{ | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(g_yl_{vz} - g_zl_{vy})\,\mathbf e_{4235} + (g_zl_{vx} - g_xl_{vz})\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(g_xl_{vy} - g_yl_{vx})\,\mathbf e_{4125} + (g_xl_{mx} + g_yl_{my} + g_zl_{mz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | ||
Line 111: | Line 111: | ||
| style="padding: 12px;" | Circle orthogonal to circle $$\mathbf c$$ and containing round point $$\mathbf a$$. | | style="padding: 12px;" | Circle orthogonal to circle $$\mathbf c$$ and containing round point $$\mathbf a$$. | ||
$$\begin{split}\mathbf c^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(c_{gz}a_y - c_{gy}a_z - c_{vx}a_w)\,\mathbf e_{423} \,&+\, (c_{gx}a_z - c_{gz}a_x - c_{vy}a_w)\,\mathbf e_{431} \\ | =\, &(c_{gz}a_y - c_{gy}a_z - c_{vx}a_w)\,\mathbf e_{423} \,&+\, (c_{gx}a_z - c_{gz}a_x - c_{vy}a_w)\,\mathbf e_{431} \\ | ||
+\, &(c_{gy}a_x - c_{gx}a_y - c_{vz}a_w)\,\mathbf e_{412} \,&+\, (c_{vx}a_x + c_{vy}a_y + c_{vz}a_z)\,\mathbf e_{321} \\ | +\, &(c_{gy}a_x - c_{gx}a_y - c_{vz}a_w)\,\mathbf e_{412} \,&+\, (c_{vx}a_x + c_{vy}a_y + c_{vz}a_z)\,\mathbf e_{321} \\ | ||
Line 122: | Line 122: | ||
| style="padding: 12px;" | Circle orthogonal to line $$\boldsymbol l$$ and containing round point $$\mathbf a$$. | | style="padding: 12px;" | Circle orthogonal to line $$\boldsymbol l$$ and containing round point $$\mathbf a$$. | ||
$$\begin{split}\boldsymbol l^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &l_{vx}a_w \mathbf e_{423} - l_{vy}a_w \mathbf e_{431} - l_{vz}a_w \mathbf e_{412}\\ | -\, &l_{vx}a_w \mathbf e_{423} - l_{vy}a_w \mathbf e_{431} - l_{vz}a_w \mathbf e_{412}\\ | ||
+\, &(l_{vx}a_x + l_{vy}a_y + l_{vz}a_z)\,\mathbf e_{321} \\ | +\, &(l_{vx}a_x + l_{vy}a_y + l_{vz}a_z)\,\mathbf e_{321} \\ | ||
Line 133: | Line 133: | ||
| style="padding: 12px;" | Plane orthogonal to circle $$\mathbf c$$ and containing flat point $$\mathbf p$$. | | style="padding: 12px;" | Plane orthogonal to circle $$\mathbf c$$ and containing flat point $$\mathbf p$$. | ||
$$\begin{split}\mathbf c^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(c_{gz}p_y - c_{gy}p_z - c_{vx}p_w)\,\mathbf e_{4235} \,&+\, (c_{gx}p_z - c_{gz}p_x - c_{vy}p_w)\,\mathbf e_{4315} \\ | =\, &(c_{gz}p_y - c_{gy}p_z - c_{vx}p_w)\,\mathbf e_{4235} \,&+\, (c_{gx}p_z - c_{gz}p_x - c_{vy}p_w)\,\mathbf e_{4315} \\ | ||
+\, &(c_{gy}p_x - c_{gx}p_y - c_{vz}p_w)\,\mathbf e_{4125} \,&+\, (c_{vx}p_x + c_{vy}p_y + c_{vz}p_z)\,\mathbf e_{3215} | +\, &(c_{gy}p_x - c_{gx}p_y - c_{vz}p_w)\,\mathbf e_{4125} \,&+\, (c_{vx}p_x + c_{vy}p_y + c_{vz}p_z)\,\mathbf e_{3215} | ||
Line 141: | Line 141: | ||
| style="padding: 12px;" | Plane orthogonal to line $$\boldsymbol l$$ and containing flat point $$\mathbf p$$. | | style="padding: 12px;" | Plane orthogonal to line $$\boldsymbol l$$ and containing flat point $$\mathbf p$$. | ||
$$\begin{split}\boldsymbol l^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &l_{vx}p_w \mathbf e_{4235} - l_{vy}p_w \mathbf e_{4315} - l_{vz}p_w \mathbf e_{4125} \\ | -\, &l_{vx}p_w \mathbf e_{4235} - l_{vy}p_w \mathbf e_{4315} - l_{vz}p_w \mathbf e_{4125} \\ | ||
+\, &(l_{vx}p_x + l_{vy}p_y + l_{vz}p_z)\,\mathbf e_{3215} | +\, &(l_{vx}p_x + l_{vy}p_y + l_{vz}p_z)\,\mathbf e_{3215} | ||
Line 149: | Line 149: | ||
| style="padding: 12px;" | Sphere orthogonal to circle $$\mathbf c$$ and containing dipole $$\mathbf d$$. | | style="padding: 12px;" | Sphere orthogonal to circle $$\mathbf c$$ and containing dipole $$\mathbf d$$. | ||
$$\begin{split}\mathbf c^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(c_{vx}d_{vx} + c_{vy}d_{vy} + c_{vz}d_{vz} + c_{gx}d_{mx} + c_{gy}d_{my} + c_{gz}d_{mz})\,\mathbf e_{1234} \\ | =\, &(c_{vx}d_{vx} + c_{vy}d_{vy} + c_{vz}d_{vz} + c_{gx}d_{mx} + c_{gy}d_{my} + c_{gz}d_{mz})\,\mathbf e_{1234} \\ | ||
+\, &(c_{my}d_{vz} - c_{mz}d_{vy} - c_{vx}d_{pw} + c_{gz}d_{py} - c_{gy}d_{pz} + c_{gw}d_{mx})\,\mathbf e_{4235} \\ | +\, &(c_{my}d_{vz} - c_{mz}d_{vy} - c_{vx}d_{pw} + c_{gz}d_{py} - c_{gy}d_{pz} + c_{gw}d_{mx})\,\mathbf e_{4235} \\ | ||
Line 160: | Line 160: | ||
| style="padding: 12px;" | Sphere orthogonal to line $$\boldsymbol l$$ and containing dipole $$\mathbf d$$. | | style="padding: 12px;" | Sphere orthogonal to line $$\boldsymbol l$$ and containing dipole $$\mathbf d$$. | ||
$$\begin{split}\boldsymbol l^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(l_{vx}d_{vx} + l_{vy}d_{vy} + l_{vz}d_{vz})\,\mathbf e_{1234} \\ | =\, &(l_{vx}d_{vx} + l_{vy}d_{vy} + l_{vz}d_{vz})\,\mathbf e_{1234} \\ | ||
+\, &(l_{my}d_{vz} - l_{mz}d_{vy} - l_{vx}d_{pw})\,\mathbf e_{4235} \\ | +\, &(l_{my}d_{vz} - l_{mz}d_{vy} - l_{vx}d_{pw})\,\mathbf e_{4235} \\ | ||
Line 171: | Line 171: | ||
| style="padding: 12px;" | Sphere orthogonal to dipole $$\mathbf d$$ and containing round point $$\mathbf a$$. | | style="padding: 12px;" | Sphere orthogonal to dipole $$\mathbf d$$ and containing round point $$\mathbf a$$. | ||
$$\begin{split}\mathbf d^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(d_{vx}a_x + d_{vy}a_y + d_{vz}a_z - d_{pw}a_w)\,\mathbf e_{1234} \\ | ||
+\, &(d_{ | +\, &(d_{my}a_z - d_{mz}a_y + d_{px}a_w - d_{vx}a_u)\,\mathbf e_{4235} \\ | ||
+\, &(d_{ | +\, &(d_{mz}a_x - d_{mx}a_z + d_{py}a_w - d_{vy}a_u)\,\mathbf e_{4315} \\ | ||
+\, &(d_{ | +\, &(d_{mx}a_y - d_{my}a_x + d_{pz}a_w - d_{vz}a_u)\,\mathbf e_{4125} \\ | ||
+\, &(d_{px}a_x | +\, &(d_{pw}a_u - d_{px}a_x - d_{py}a_y - d_{pz}a_z)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | ||
Line 182: | Line 182: | ||
| style="padding: 12px;" | Sphere centered at flat point $$\mathbf p$$ and containing round point $$\mathbf a$$. | | style="padding: 12px;" | Sphere centered at flat point $$\mathbf p$$ and containing round point $$\mathbf a$$. | ||
$$\begin{split}\mathbf p^\unicode["segoe ui symbol"]{ | $$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = | ||
-\, &p_wa_w \mathbf e_{1234} + p_xa_w \mathbf e_{4235} + p_ya_w \mathbf e_{4315} + p_za_w \mathbf e_{4125} \\ | |||
+\, &(p_xa_x | +\, &(p_wa_u - p_xa_x - p_ya_y - p_za_z)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:point_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:point_connect_round.svg|200px]] |
Revision as of 03:08, 23 October 2023
The connect operation is performed by taking the wedge product between the dual of an object A and another object B with lower grade. The result is an object C that is orthogonal to A and contains B, allowing a projection of B onto A through a simple intersection of A and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$