Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 15: | Line 15: | ||
! Formula || Illustration | ! Formula || Illustration | ||
|- | |- | ||
| style="padding: 12px;" | Dipole | | style="padding: 12px;" | Dipole containing round point $$\mathbf a$$ and orthogonal to sphere $$\mathbf s$$. | ||
$$\begin{split}\mathbf a \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf a \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
Line 24: | Line 24: | ||
| style="padding: 24px;" | [[Image:sphere_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Dipole | | style="padding: 12px;" | Dipole containing round point $$\mathbf a$$ and orthogonal to plane $$\mathbf g$$. | ||
$$\begin{split}\mathbf a \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf a \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
Line 33: | Line 33: | ||
| style="padding: 24px;" | [[Image:plane_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Circle | | style="padding: 12px;" | Circle containing dipole $$\mathbf d$$ and orthogonal to sphere $$\mathbf s$$. | ||
$$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
Line 44: | Line 44: | ||
| style="padding: 24px;" | [[Image:sphere_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Circle | | style="padding: 12px;" | Circle containing dipole $$\mathbf d$$ and orthogonal to plane $$\mathbf g$$. | ||
$$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
Line 55: | Line 55: | ||
| style="padding: 24px;" | [[Image:plane_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Line | | style="padding: 12px;" | Line containing flat point $$\mathbf p$$ and orthogonal to sphere $$\mathbf s$$. | ||
$$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf p \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} = | ||
Line 63: | Line 63: | ||
| style="padding: 24px;" | [[Image:sphere_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Line | | style="padding: 12px;" | Line containing flat point $$\mathbf p$$ and orthogonal to plane $$\mathbf g$$. | ||
$$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf p \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
Line 71: | Line 71: | ||
| style="padding: 24px;" | [[Image:plane_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Sphere | | style="padding: 12px;" | Sphere containing circle $$\mathbf c$$ and orthogonal to sphere $$\mathbf s$$. | ||
$$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf c \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
Line 82: | Line 82: | ||
| style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_circle.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Sphere | | style="padding: 12px;" | Sphere containing circle $$\mathbf c$$ and orthogonal to plane $$\mathbf g$$. | ||
$$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf c \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} = | ||
Line 93: | Line 93: | ||
| style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_circle.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Plane | | style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and orthogonal to sphere $$\mathbf s$$. | ||
$$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\boldsymbol l \wedge \mathbf s^\unicode["segoe ui symbol"]{x2606} | ||
Line 101: | Line 101: | ||
| style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | | style="padding: 24px;" | [[Image:sphere_connect_line.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Plane | | style="padding: 12px;" | Plane containing line $$\boldsymbol l$$ and orthogonal to plane $$\mathbf g$$. | ||
$$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\boldsymbol l \wedge \mathbf g^\unicode["segoe ui symbol"]{x2606} | ||
Line 109: | Line 109: | ||
| style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | | style="padding: 24px;" | [[Image:plane_connect_line.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Circle | | style="padding: 12px;" | Circle containing round point $$\mathbf a$$ and orthogonal to circle $$\mathbf c$$. | ||
$$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf a \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
Line 120: | Line 120: | ||
| style="padding: 24px;" | [[Image:circle_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:circle_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Circle | | style="padding: 12px;" | Circle containing round point $$\mathbf a$$ and orthogonal to line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf a \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | ||
Line 131: | Line 131: | ||
| style="padding: 24px;" | [[Image:line_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:line_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Plane | | style="padding: 12px;" | Plane containing flat point $$\mathbf p$$ and orthogonal to circle $$\mathbf c$$. | ||
$$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf p \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
Line 139: | Line 139: | ||
| style="padding: 24px;" | [[Image:circle_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:circle_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Plane | | style="padding: 12px;" | Plane containing flat point $$\mathbf p$$ and orthogonal to line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf p \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} = | ||
Line 147: | Line 147: | ||
| style="padding: 24px;" | [[Image:line_connect_point.svg|200px]] | | style="padding: 24px;" | [[Image:line_connect_point.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Sphere | | style="padding: 12px;" | Sphere containing dipole $$\mathbf d$$ orthogonal to circle $$\mathbf c$$. | ||
$$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
Line 158: | Line 158: | ||
| style="padding: 24px;" | [[Image:circle_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:circle_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Sphere | | style="padding: 12px;" | Sphere containing dipole $$\mathbf d$$ and orthogonal to line $$\boldsymbol l$$. | ||
$$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} | ||
Line 169: | Line 169: | ||
| style="padding: 24px;" | [[Image:line_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:line_connect_dipole.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Sphere | | style="padding: 12px;" | Sphere containing round point $$\mathbf a$$ and orthogonal to dipole $$\mathbf d$$. | ||
$$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} | ||
Line 180: | Line 180: | ||
| style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | ||
|- | |- | ||
| style="padding: 12px;" | Sphere | | style="padding: 12px;" | Sphere containing round point $$\mathbf a$$ and centered at flat point $$\mathbf p$$. | ||
$$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = |
Revision as of 03:12, 23 October 2023
The connect operation is performed by taking the wedge product between the dual of an object A and another object B with lower grade. The result is an object C that is orthogonal to A and contains B, allowing a projection of B onto A through a simple intersection of A and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$