Expansion: Difference between revisions
Jump to navigation
Jump to search
Eric Lengyel (talk | contribs) No edit summary |
Eric Lengyel (talk | contribs) No edit summary |
||
Line 150: | Line 150: | ||
$$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \mathbf c^\unicode["segoe ui symbol"]{x2606} | ||
=\, &(c_{vx}d_{ | =\, &(d_{vx}c_{vx} + d_{vy}c_{vy} + d_{vz}c_{vz} + d_{mx}c_{gx} + d_{my}c_{gy} + d_{mz}c_{gz})\,\mathbf e_{1234} \\ | ||
+\, &(c_{my}d_{ | +\, &(d_{vz}c_{my} - d_{vy}c_{mz} - d_{pw}c_{vx} + d_{py}c_{gz} - d_{pz}c_{gy} + d_{mx}c_{gw})\,\mathbf e_{4235} \\ | ||
+\, &(c_{mz}d_{ | +\, &(d_{vx}c_{mz} - d_{vz}c_{mx} - d_{pw}c_{vy} + d_{pz}c_{gx} - d_{px}c_{gz} + d_{my}c_{gw})\,\mathbf e_{4315} \\ | ||
+\, &(c_{mx}d_{ | +\, &(d_{vy}c_{mx} - d_{vx}c_{my} - d_{pw}c_{vz} + d_{px}c_{gy} - d_{py}c_{gx} + d_{mz}c_{gw})\,\mathbf e_{4125} \\ | ||
+\, &(c_{vx}d_{ | +\, &(d_{px}c_{vx} + d_{py}c_{vy} + d_{pz}c_{vz} + d_{mx}c_{mx} + d_{my}c_{my} + d_{mz}c_{mz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:circle_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:circle_connect_dipole.svg|200px]] | ||
Line 161: | Line 161: | ||
$$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf d \wedge \boldsymbol l^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(d_{vx}l_{vx} + d_{vy}l_{vy} + d_{vz}l_{vz})\,\mathbf e_{1234} \\ | ||
+\, &(l_{my}d_{ | +\, &(d_{vz}l_{my} - d_{vy}l_{mz} - d_{pw}l_{vx})\,\mathbf e_{4235} \\ | ||
+\, &(l_{mz}d_{ | +\, &(d_{vx}l_{mz} - d_{vz}l_{mx} - d_{pw}l_{vy})\,\mathbf e_{4315} \\ | ||
+\, &(l_{mx}d_{ | +\, &(d_{vy}l_{mx} - d_{vx}l_{my} - d_{pw}l_{vz})\,\mathbf e_{4125} \\ | ||
+\, &(l_{vx}d_{ | +\, &(d_{px}l_{vx} + d_{py}l_{vy} + d_{pzl_{vz}} + d_{mx}l_{mx} + d_{my}l_{my} + d_{mz}l_{mz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:line_connect_dipole.svg|200px]] | | style="padding: 24px;" | [[Image:line_connect_dipole.svg|200px]] | ||
Line 172: | Line 172: | ||
$$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} | $$\begin{split}\mathbf a \wedge \mathbf d^\unicode["segoe ui symbol"]{x2606} | ||
=\, &( | =\, &(a_xd_{vx} + a_yd_{vy} + a_zd_{vz} - a_wd_{pw})\,\mathbf e_{1234} \\ | ||
+\, &( | +\, &(a_zd_{my} - a_yd_{mz} + a_wd_{px} - a_ud_{vx})\,\mathbf e_{4235} \\ | ||
+\, &( | +\, &(a_xd_{mz} - a_zd_{mx} + a_wd_{py} - a_ud_{vy})\,\mathbf e_{4315} \\ | ||
+\, &( | +\, &(a_yd_{mx} - a_xd_{my} + a_wd_{pz} - a_ud_{vz})\,\mathbf e_{4125} \\ | ||
+\, &( | +\, &(a_ud_{pw} - a_xd_{px} - a_yd_{py} - a_zd_{pz})\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:dipole_connect_round.svg|200px]] | ||
Line 183: | Line 183: | ||
$$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = | $$\begin{split}\mathbf a \wedge \mathbf p^\unicode["segoe ui symbol"]{x2606} = | ||
-\, & | -\, &a_wp_w \mathbf e_{1234} + a_wp_x \mathbf e_{4235} + a_wp_y \mathbf e_{4315} + a_wp_z \mathbf e_{4125} \\ | ||
+\, &( | +\, &(a_up_w - a_xp_x - a_yp_y - a_zp_z)\,\mathbf e_{3215} | ||
\end{split}$$ | \end{split}$$ | ||
| style="padding: 24px;" | [[Image:point_connect_round.svg|200px]] | | style="padding: 24px;" | [[Image:point_connect_round.svg|200px]] |
Latest revision as of 06:50, 24 October 2023
The expansion operation is performed by taking the wedge product between an object A and the antidual of another object B with higher grade. The result is an object C that contains A and is orthogonal to B, allowing a projection of A onto B through a simple intersection of B and C.
The flat points, lines, planes, round points, dipoles, circles, and spheres appearing in the following tables are defined as follows:
- $$\mathbf p = p_x \mathbf e_{15} + p_y \mathbf e_{25} + p_z \mathbf e_{35} + p_w \mathbf e_{45}$$
- $$\boldsymbol l = l_{vx} \mathbf e_{415} + l_{vy} \mathbf e_{425} + l_{vz} \mathbf e_{435} + l_{mx} \mathbf e_{235} + l_{my} \mathbf e_{315} + l_{mz} \mathbf e_{125}$$
- $$\mathbf g = g_x \mathbf e_{4235} + g_y \mathbf e_{4315} + g_z \mathbf e_{4125} + g_w \mathbf e_{3215}$$
- $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
- $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
- $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
- $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$