Carriers: Difference between revisions
Eric Lengyel (talk | contribs) (Created page with "== Carrier == The ''carrier'' of a round object (a round point, dipole, circle, or sphere) is the lowest dimensional flat object (a flat point, line, or plane) that contains it. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{car}(\mathbf x)$$, and it is calculated by simply multiplying $$\mathbf x$$ by $$\mathbf e_5$$ with the wedge product to extract the round part of $$\mathbf x$$ as a flat geometry: :$$\operatorn...") |
Eric Lengyel (talk | contribs) |
||
Line 29: | Line 29: | ||
== Anticarrier == | == Anticarrier == | ||
The ''anticarrier'' of a round object is the carrier of its [[dual]]. The | The ''anticarrier'' of a round object is the carrier of its [[dual]]. The anticarrier of an object $$\mathbf x$$ is denoted by $$\operatorname{acr}(\mathbf x)$$, and it is calculated by | ||
:$$\operatorname{acr}(\mathbf x) = \mathbf x^* \wedge \mathbf e_5$$ . | :$$\operatorname{acr}(\mathbf x) = \mathbf x^* \wedge \mathbf e_5$$ . |
Revision as of 07:12, 6 August 2023
Carrier
The carrier of a round object (a round point, dipole, circle, or sphere) is the lowest dimensional flat object (a flat point, line, or plane) that contains it. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{car}(\mathbf x)$$, and it is calculated by simply multiplying $$\mathbf x$$ by $$\mathbf e_5$$ with the wedge product to extract the round part of $$\mathbf x$$ as a flat geometry:
- $$\operatorname{car}(\mathbf x) = \mathbf x \wedge \mathbf e_5$$ .
The following table lists the carriers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.
Type | Definition | Carrier |
---|---|---|
Round point | $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$ | $$\operatorname{car}(\mathbf a) = a_x \mathbf e_{15} + a_y \mathbf e_{25} + a_z \mathbf e_{35} + a_w \mathbf e_{45}$$ |
Dipole | $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$ | $$\operatorname{car}(\mathbf d) = d_{vx} \mathbf e_{415} + d_{vy} \mathbf e_{425} + d_{vz} \mathbf e_{435} + d_{mx} \mathbf e_{235} + d_{my} \mathbf e_{315} + d_{mz} \mathbf e_{125}$$ |
Circle | $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$ | $$\operatorname{car}(\mathbf c) = c_{gx} \mathbf e_{4235} + c_{gy} \mathbf e_{4315} + c_{gz} \mathbf e_{4125} + c_{gw} \mathbf e_{3215}$$ |
Sphere | $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$ | $$\operatorname{car}(\mathbf s) = s_u {\large\unicode{x1d7d9}}$$ |
Anticarrier
The anticarrier of a round object is the carrier of its dual. The anticarrier of an object $$\mathbf x$$ is denoted by $$\operatorname{acr}(\mathbf x)$$, and it is calculated by
- $$\operatorname{acr}(\mathbf x) = \mathbf x^* \wedge \mathbf e_5$$ .
The anticarrier is perpendicular to the carrier, and it contains the center of the object. Thus, the meet of the carrier and anticarrier can be used to calculate the center of an object $$\mathbf x$$ as a flat point with the formula $$\operatorname{car}(\mathbf x) \vee \operatorname{acr}(\mathbf x)$$.
The following table lists the anticarriers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.
Type | Definition | Anticarrier |
---|---|---|
Round point | $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$ | $$\operatorname{acr}(\mathbf a) = -a_w {\large\unicode{x1d7d9}}$$ |
Dipole | $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$ | $$\operatorname{acr}(\mathbf d) = -d_{vx} \mathbf e_{4235} - d_{vy} \mathbf e_{4315} - d_{vz} \mathbf e_{4125} + d_{pw} \mathbf e_{3215}$$ |
Circle | $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$ | $$\operatorname{acr}(\mathbf c) = c_{gx} \mathbf e_{415} + c_{gy} \mathbf e_{425} + c_{gz} \mathbf e_{435} + c_{vx} \mathbf e_{235} + c_{vy} \mathbf e_{315} + c_{vz} \mathbf e_{125}$$ |
Sphere | $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$ | $$\operatorname{acr}(\mathbf s) = -s_x \mathbf e_{15} - s_y \mathbf e_{25} - s_z \mathbf e_{35} + s_u \mathbf e_{45}$$ |