File:Sphere meet sphere.svg and Carriers: Difference between pages

From Conformal Geometric Algebra
(Difference between pages)
Jump to navigation Jump to search
(Uploaded with SimpleBatchUpload)
 
(Created page with "== Carrier == The ''carrier'' of a round object (a round point, dipole, circle, or sphere) is the lowest dimensional flat object (a flat point, line, or plane) that contains it. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{car}(\mathbf x)$$, and it is calculated by simply multiplying $$\mathbf x$$ by $$\mathbf e_5$$ with the wedge product to extract the round part of $$\mathbf x$$ as a flat geometry: :$$\operatorn...")
 
Line 1: Line 1:
== Carrier ==


The ''carrier'' of a round object (a [[round point]], [[dipole]], [[circle]], or [[sphere]]) is the lowest dimensional flat object (a [[flat point]], [[line]], or [[plane]]) that contains it. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{car}(\mathbf x)$$, and it is calculated by simply multiplying $$\mathbf x$$ by $$\mathbf e_5$$ with the [[wedge product]] to extract the round part of $$\mathbf x$$ as a flat geometry:
:$$\operatorname{car}(\mathbf x) = \mathbf x \wedge \mathbf e_5$$ .
The following table lists the carriers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.
{| class="wikitable"
! Type !! Definition !! Carrier
|-
| style="padding: 12px;" | [[Round point]]
| style="padding: 12px;" | $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
| style="padding: 12px;" | $$\operatorname{car}(\mathbf a) = a_x \mathbf e_{15} + a_y \mathbf e_{25} + a_z \mathbf e_{35} + a_w \mathbf e_{45}$$
|-
| style="padding: 12px;" | [[Dipole]]
| style="padding: 12px;" | $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
| style="padding: 12px;" | $$\operatorname{car}(\mathbf d) = d_{vx} \mathbf e_{415} + d_{vy} \mathbf e_{425} + d_{vz} \mathbf e_{435} + d_{mx} \mathbf e_{235} + d_{my} \mathbf e_{315} + d_{mz} \mathbf e_{125}$$
|-
| style="padding: 12px;" | [[Circle]]
| style="padding: 12px;" | $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
| style="padding: 12px;" | $$\operatorname{car}(\mathbf c) = c_{gx} \mathbf e_{4235} + c_{gy} \mathbf e_{4315} + c_{gz} \mathbf e_{4125} + c_{gw} \mathbf e_{3215}$$
|-
| style="padding: 12px;" | [[Sphere]]
| style="padding: 12px;" | $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$
| style="padding: 12px;" | $$\operatorname{car}(\mathbf s) = s_u {\large\unicode{x1d7d9}}$$
|}
== Anticarrier ==
The ''anticarrier'' of a round object is the carrier of its [[dual]]. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{acr}(\mathbf x)$$, and it is calculated by
:$$\operatorname{acr}(\mathbf x) = \mathbf x^* \wedge \mathbf e_5$$ .
The anticarrier is perpendicular to the carrier, and it contains the center of the object. Thus, the meet of the carrier and anticarrier can be used to calculate the center of an object $$\mathbf x$$ as a [[flat point]] with the formula $$\operatorname{car}(\mathbf x) \vee \operatorname{acr}(\mathbf x)$$.
The following table lists the anticarriers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.
{| class="wikitable"
! Type !! Definition !! Anticarrier
|-
| style="padding: 12px;" | [[Round point]]
| style="padding: 12px;" | $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$
| style="padding: 12px;" | $$\operatorname{acr}(\mathbf a) = -a_w {\large\unicode{x1d7d9}}$$
|-
| style="padding: 12px;" | [[Dipole]]
| style="padding: 12px;" | $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$
| style="padding: 12px;" | $$\operatorname{acr}(\mathbf d) = -d_{vx} \mathbf e_{4235} - d_{vy} \mathbf e_{4315} - d_{vz} \mathbf e_{4125} + d_{pw} \mathbf e_{3215}$$
|-
| style="padding: 12px;" | [[Circle]]
| style="padding: 12px;" | $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$
| style="padding: 12px;" | $$\operatorname{acr}(\mathbf c) = c_{gx} \mathbf e_{415} + c_{gy} \mathbf e_{425} + c_{gz} \mathbf e_{435} + c_{vx} \mathbf e_{235} + c_{vy} \mathbf e_{315} + c_{vz} \mathbf e_{125}$$
|-
| style="padding: 12px;" | [[Sphere]]
| style="padding: 12px;" | $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$
| style="padding: 12px;" | $$\operatorname{acr}(\mathbf s) = -s_x \mathbf e_{15} - s_y \mathbf e_{25} - s_z \mathbf e_{35} + s_u \mathbf e_{45}$$
|}
== See Also ==
* [[Attitude]]
* [[Centers]]
* [[Containers]]
* [[Partners]]

Revision as of 03:16, 6 August 2023

Carrier

The carrier of a round object (a round point, dipole, circle, or sphere) is the lowest dimensional flat object (a flat point, line, or plane) that contains it. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{car}(\mathbf x)$$, and it is calculated by simply multiplying $$\mathbf x$$ by $$\mathbf e_5$$ with the wedge product to extract the round part of $$\mathbf x$$ as a flat geometry:

$$\operatorname{car}(\mathbf x) = \mathbf x \wedge \mathbf e_5$$ .

The following table lists the carriers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.

Type Definition Carrier
Round point $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$ $$\operatorname{car}(\mathbf a) = a_x \mathbf e_{15} + a_y \mathbf e_{25} + a_z \mathbf e_{35} + a_w \mathbf e_{45}$$
Dipole $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$ $$\operatorname{car}(\mathbf d) = d_{vx} \mathbf e_{415} + d_{vy} \mathbf e_{425} + d_{vz} \mathbf e_{435} + d_{mx} \mathbf e_{235} + d_{my} \mathbf e_{315} + d_{mz} \mathbf e_{125}$$
Circle $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$ $$\operatorname{car}(\mathbf c) = c_{gx} \mathbf e_{4235} + c_{gy} \mathbf e_{4315} + c_{gz} \mathbf e_{4125} + c_{gw} \mathbf e_{3215}$$
Sphere $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$ $$\operatorname{car}(\mathbf s) = s_u {\large\unicode{x1d7d9}}$$

Anticarrier

The anticarrier of a round object is the carrier of its dual. The carrier of an object $$\mathbf x$$ is denoted by $$\operatorname{acr}(\mathbf x)$$, and it is calculated by

$$\operatorname{acr}(\mathbf x) = \mathbf x^* \wedge \mathbf e_5$$ .

The anticarrier is perpendicular to the carrier, and it contains the center of the object. Thus, the meet of the carrier and anticarrier can be used to calculate the center of an object $$\mathbf x$$ as a flat point with the formula $$\operatorname{car}(\mathbf x) \vee \operatorname{acr}(\mathbf x)$$.

The following table lists the anticarriers for the round objects in the 5D conformal geometric algebra $$\mathcal G_{4,1}$$.

Type Definition Anticarrier
Round point $$\mathbf a = a_x \mathbf e_1 + a_y \mathbf e_2 + a_z \mathbf e_3 + a_w \mathbf e_4 + a_u \mathbf e_5$$ $$\operatorname{acr}(\mathbf a) = -a_w {\large\unicode{x1d7d9}}$$
Dipole $$\mathbf d = d_{vx} \mathbf e_{41} + d_{vy} \mathbf e_{42} + d_{vz} \mathbf e_{43} + d_{mx} \mathbf e_{23} + d_{my} \mathbf e_{31} + d_{mz} \mathbf e_{12} + d_{px} \mathbf e_{15} + d_{py} \mathbf e_{25} + d_{pz} \mathbf e_{35} + d_{pw} \mathbf e_{45}$$ $$\operatorname{acr}(\mathbf d) = -d_{vx} \mathbf e_{4235} - d_{vy} \mathbf e_{4315} - d_{vz} \mathbf e_{4125} + d_{pw} \mathbf e_{3215}$$
Circle $$\mathbf c = c_{gx} \mathbf e_{423} + c_{gy} \mathbf e_{431} + c_{gz} \mathbf e_{412} + c_{gw} \mathbf e_{321} + c_{vx} \mathbf e_{415} + c_{vy} \mathbf e_{425} + c_{vz} \mathbf e_{435} + c_{mx} \mathbf e_{235} + c_{my} \mathbf e_{315} + c_{mz} \mathbf e_{125}$$ $$\operatorname{acr}(\mathbf c) = c_{gx} \mathbf e_{415} + c_{gy} \mathbf e_{425} + c_{gz} \mathbf e_{435} + c_{vx} \mathbf e_{235} + c_{vy} \mathbf e_{315} + c_{vz} \mathbf e_{125}$$
Sphere $$\mathbf s = s_u \mathbf e_{1234} + s_x \mathbf e_{4235} + s_y \mathbf e_{4315} + s_z \mathbf e_{4125} + s_w \mathbf e_{3215}$$ $$\operatorname{acr}(\mathbf s) = -s_x \mathbf e_{15} - s_y \mathbf e_{25} - s_z \mathbf e_{35} + s_u \mathbf e_{45}$$

See Also

File history

Click on a date/time to view the file as it appeared at that time.

Date/TimeThumbnailDimensionsUserComment
current03:12, 6 August 2023Thumbnail for version as of 03:12, 6 August 2023135 × 99 (7 KB)Eric Lengyel (talk | contribs)Uploaded with SimpleBatchUpload

The following page uses this file:

Metadata